Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mrc1 transduces signals of DNA replication stress to activate Rad53

Abstract

Cells experiencing DNA replication stress activate a response pathway that delays entry into mitosis and promotes DNA repair and completion of DNA replication. The protein kinases ScRad53 and SpCds1 (in baker's and fission yeast, respectively) are central to this pathway. We describe a conserved protein Mrc1, mediator of the replication checkpoint, required for activation of ScRad53 and SpCds1 during replication stress. mrc1 mutants are sensitive to hydroxyurea and have a checkpoint defect similar to rad53 and cds1 mutants. Mrc1 may be the replicative counterpart of Rad9 and Crb2, which are required for activating ScRad53 and Chk1 in response to DNA damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MRC1 is required for cell-cycle arrest in response to replication blocks.
Figure 2: Mrc1 functions in S phase and is required for responses to replication stress and DNA damage.
Figure 3: Mrc1 is required for Rad53 activation during replication stress.
Figure 4: Mrc1 is phosphorylated in response to HU.
Figure 5: S. pombe Mrc1 functions in the replication checkpoint.
Figure 6: Comparison of the replication checkpoint pathways in different organisms.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Data deposits

  • The nucleotide sequences of S. cerevisiae Mrc1 and S. pombe Mrc1 have been deposited at GenBank under accession numbers CAC42953.1 and 11359068, respectively.

References

  1. Zhou, B. B. & Elledge, S. J. The DNA damage response: putting checkpoints in perspective. Nature 408, 433–439 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Hirao, A. et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287, 1824–1827 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Shieh, S. Y., Ahn, J., Tamai, K., Taya, Y. & Prives, C. The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev. 14, 289–300 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Chehab, N. H., Malikzay, A., Appel, M. & Halazonetis, T. D. Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev. 14, 278–288 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bell, D. W. et al. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 286, 2528–2531 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Sanchez, Y. et al. Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science 271, 357–360 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Sun, Z., Fay, D. S., Marini, F., Foiani, M. & Stern, D. F. Spk1/Rad53 is regulated by Mec1-dependent protein phosphorylation in DNA replication and damage checkpoint pathways. Genes Dev. 10, 395–406 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Lindsay, H. D. et al. S-phase-specific activation of Cds1 kinase defines a subpathway of the checkpoint response in Schizosaccharomyces pombe. Genes Dev. 12, 382–395 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun, Z., Hsiao, J., Fay, D. S. & Stern, D. F. Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint. Science 281, 272–274 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Pellicioli, A. et al. Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase. EMBO J. 18, 6561–6572 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Saka, Y., Esashi, F., Matsusaka, T., Mochida, S. & Yanagida, M. Damage and replication checkpoint control in fission yeast is ensured by interactions of Crb2, a protein with BRCT motif, with Cut5 and Chk1. Genes Dev. 11, 3387–3400 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Desany, B. A., Alcasabas, A. A., Bachant, J. B. & Elledge, S. J. Recovery from DNA replicational stress is the essential function of the S-phase checkpoint pathway. Genes Dev. 12, 2956–2970 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sanchez, Y. et al. Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms. Science 286, 1166–1171 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Willson, J., Wilson, S., Warr, N. & Watts, F. Z. Isolation and characterization of the Schizosaccharomyces pombe rhp9 gene: a gene required for the DNA damage checkpoint but not the replication checkpoint. Nucleic Acids Res. 25, 2138–2146 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kumagai, A. & Dunphy, G. W. Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts. Mol. Cell 6, 839–849 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Weinert, T. A. & Hartwell, L. H. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241, 317–322 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Paulovich, A. G. & Hartwell, L. H. . A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage. Cell 82, 841–847 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Spellman, P. T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Santocanale, C. & Diffley, J. F. A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 395, 615–618 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Allen, J. B., Zhou, Z., Siede, W., Friedberg, E. C. & Elledge, S. J. The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dev. 8, 2401–2415 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Vialard, J. E., Gilbert, C. S., Green, C. M. & Lowndes, N. F. The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage. EMBO J. 17, 5679–5688 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Emili, A. MEC1-dependent phosphorylation of Rad9p in response to DNA damage. Mol. Cell 2, 183–189 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Foiani, M. et al. DNA damage checkpoints and DNA replication controls in Saccharomyces cerevisiae. Mutat. Res. 451, 187–196 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Barbet, N. C. & Carr, A. M. Fission yeast wee1 protein kinase is not required for DNA damage-dependent mitotic arrest. Nature 364, 824–827 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Enoch, T., Carr, A. M. & Nurse, P. Fission yeast genes involved in coupling mitosis to completion of DNA replication. Genes Dev. 6, 2035–2046 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Allen, J. B. & Elledge, S. J. A family of vectors that facilitate transposon and insertional mutagenesis of cloned genes in yeast. Yeast 10, 1267–1272 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Paciotti, V., Lucchini, G., Plevani, P., and Longhese, M. P. Mec1p is essential for phosphorylation of the yeast DNA damage checkpoint protein Ddc1p, which physically interacts with Mec3p. EMBO J. 17, 4199–4209 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bahler, J. et al. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14, 943–951 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Russell, P. & Nurse P. cdc25+ functions as an inducer in the mitotic control of fission yeast. Cell 45, 145–153 (1986).

    Article  CAS  PubMed  Google Scholar 

  31. Caspari, T. et al. Characterization of Schizosaccharomyces pombe Hus1: a PCNA-related protein that associates with Rad1 and Rad9. Mol. Cell Biol. 20, 1254–1262 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tasto, J. J., Carnahan, R. H., McDonald, W. H. & Gould, K. L. Vectors and gene targeting modules for tandem affinity purification in Schizosaccharomyces pombe. Yeast 18, 657–662 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Plon and her lab for allowing us to conduct several of these experiments in their facility, and P. Russell for sharing unpublished results. This work was supported by National Institutes of Health Grant GM44664 to S.J.E. and a Human Frontiers Science Programme RGO 178/2000 M to A.C. S.J.E. is an Investigator with the Howard Hughes Medical Institute, The Welch Chair of Biochemistry and Senior Scholar of the Ellison Foundation. A.J.O. was supported by the NIGMS T32 GM08307-11 training grant. Correspondence and requests for materials should be addressed to S.J.E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Elledge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alcasabas, A., Osborn, A., Bachant, J. et al. Mrc1 transduces signals of DNA replication stress to activate Rad53. Nat Cell Biol 3, 958–965 (2001). https://doi.org/10.1038/ncb1101-958

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1101-958

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing