Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A multiprotein complex mediates the ATP-dependent assembly of spliceosomal U snRNPs

Abstract

The spliceosomal snRNPs U1, U2, U4 and U5 contain a common RNP structure termed the Sm core that is formed by the binding of Sm proteins onto the U snRNA. Although isolated Sm proteins assemble spontaneously onto U snRNAs in vitro, there is increasing evidence that SMN and its interactor Gemin2 are involved in this process in vivo. Here, we describe a cell-free assay system for the assembly of U snRNPs that closely reproduces in vivo conditions. Using this system, we show that assembly of U1 snRNP depends on ATP. Immunodepletion of SMN–Gemin2 from the extract abolished assembly even though the extract contained high levels of Sm proteins. An affinity-purified macromolecular SMN complex consisting of 16 components including all Sm proteins restored assembly in the immunodepleted extract. These data provide the first direct evidence that a complex containing SMN and Gemin2 mediates the active assembly of spliceosomal U snRNPs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vitro assembly of U1 snRNP in Xenopus laevis egg extract.
Figure 2: ATP-dependent assembly of U1 snRNP in egg extract.
Figure 3: Immunodepletion of SMN and Gemin2 from egg extract abolishes U1 snRNP assembly.
Figure 4: Molecular characterization of a nuclear SMN complex.
Figure 5: In vitro reconstitution of U1 snRNP assembly with purified SMN complexes.

Similar content being viewed by others

References

  1. Will, C. L. & Luhrmann, R. Spliceosomal UsnRNP biogenesis, structure and function. Curr. Opin. Cell Biol. 13, 290–301 (2001).

    Article  CAS  Google Scholar 

  2. Achsel, T. et al. A doughnut-shaped heteromer of human Sm-like proteins binds to the 3′-end of U6 snRNA, thereby facilitating U4/U6 duplex formation in vitro. EMBO J. 18, 5789–5802 (1999).

    Article  CAS  Google Scholar 

  3. Seraphin, B. Sm and Sm-like proteins belong to a large family: identification of proteins of the U6 as well as the U1, U2, U4 and U5 snRNPs. EMBO J. 14, 2089–2098 (1995).

    Article  CAS  Google Scholar 

  4. Zhang, D., Abovich, N. & Rosbash, M. A biochemical function for the Sm complex. Mol. Cell 7, 319–329 (2001).

    Article  CAS  Google Scholar 

  5. Mattaj, I. W. & De Robertis, E. M. Nuclear segregation of U2 snRNA requires binding of specific snRNP proteins. Cell 40, 111–118 (1985).

    Article  CAS  Google Scholar 

  6. Mattaj, I. W. in Structure and Function of Major and Minor Small Nuclear Ribonculeoprotein Particles (ed. Birnstiel, M.) 100–114 (Springer-Verlag, Berlin/NewYork, 1988).

    Book  Google Scholar 

  7. Neuman de Vegvar, H. E. & Dahlberg, J. E. Nucleocytoplasmic transport and processing of small nuclear RNA precursors. Mol. Cell. Biol. 10, 3365–3375 (1990).

    Article  CAS  Google Scholar 

  8. Fischer, U. & Luhrmann, R. An essential signaling role for the m3G cap in the transport of U1 snRNP to the nucleus. Science 249, 786–790 (1990).

    Article  CAS  Google Scholar 

  9. Raker, V. A., Plessel, G. & Luhrmann, R. The snRNP core assembly pathway: identification of stable core protein heteromeric complexes and an snRNP subcore particle in vitro. EMBO J. 15, 2256–2269 (1996).

    Article  CAS  Google Scholar 

  10. Raker, V. A., Hartmuth, K., Kastner, B. & Lührmann, R. Spliceosomal U snRNP core assembly: Sm proteins assemble onto a Sm site RNA nonanucleotide in a specific and thermodynamically stable manner. Mol. Cell. Biol. 19, 6554–6565 (1999).

    Article  CAS  Google Scholar 

  11. Fischer, U., Liu, Q. & Dreyfuss, G. The SMN–SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell 90, 1023–1029 (1997).

    Article  CAS  Google Scholar 

  12. Buhler, D., Raker, V., Luhrmann, R. & Fischer, U. Essential role for the tudor domain of SMN in spliceosomal U snRNP assembly: implications for spinal muscular atrophy. Hum. Mol. Genet. 8, 2351–2357 (1999).

    Article  CAS  Google Scholar 

  13. Liu, Q., Fischer, U., Wang, F. & Dreyfuss, G. The spinal muscular atrophy disease gene product, SMN, and its associated protein SIP1 are in a complex with spliceosomal snRNP proteins. Cell 90, 1013–1021 (1997).

    Article  CAS  Google Scholar 

  14. Charroux, B. et al. Gemin3: a novel DEAD box protein that interacts with SMN, the spinal muscular atrophy gene product, and is a component of gems. J. Cell Biol. 147, 1181–1194 (1999).

    Article  CAS  Google Scholar 

  15. Grundhoff, A. T. et al. Characterisation of DP103, a novel DEAD box protein that binds to the Epstein–Barr virus nuclear proteins EBNA2 and EBNA3C. J. Biol. Chem. 27, 19136–19144 (1999).

    Article  Google Scholar 

  16. Charroux, B. et al. Gemin4. A novel component of the SMN complex that is found in both gems and nucleoli. J. Cell Biol. 148, 1177–1186 (2000).

    Article  CAS  Google Scholar 

  17. Meister, G. et al. Characterization of a nuclear 20S complex containing the survival of motor neurons (SMN) protein and a specific subset of spliceosomal Sm proteins. Hum. Mol. Genet. 9, 1977–1986 (2000).

    Article  CAS  Google Scholar 

  18. Müller, B., Link, J. & Smythe, C. Assembly of U7 small nuclear ribonucleoprotein particle and histone RNA 3′ processing in Xenopus egg extracts. J. Biol. Chem. 275, 24284–24293 (2000).

    Article  Google Scholar 

  19. Jarmolowski, A. & Mattaj, I. W. The determinants for Sm protein binding to Xenopus U1 and U5 snRNAs are complex and non-identical. EMBO J. 12, 223–232 (1993).

    Article  CAS  Google Scholar 

  20. Hunt, S. L., Hsuan, J. J., Totty, N. & Jackson, R. J. unr, a cellular cytoplasmic RNA-binding protein with five cold-shock domains, is required for internal initiation of translation of human rhinovirus RNA. Genes Dev. 13, 347–448 (1998).

    Google Scholar 

  21. Johnson, J. L. & Craig, E. A. Protein folding in vivo: unraveling complex pathways. Cell 90, 201–204 (1997).

    Article  CAS  Google Scholar 

  22. Pu, W. T., Krapivinsky, G. P., Krapivinsky, L. & Clapham, D. E. pICln inhibits snRNP biogenesis by binding core spliceosomal proteins. Mol. Cell. Biol. 19, 4113–4120 (1999).

    Article  CAS  Google Scholar 

  23. Friesen, W. J., Massenet, S., Paushkin, S., Wyce, A. & Dreyfuss, G. SMN, the product of the spinal muscular atrophy gene, binds preferentially to dimethylarginine-containing protein targets. Mol. Cell 7, 1111–1117 (2001).

    Article  CAS  Google Scholar 

  24. Friesen, W. J. & Dreyfuss, G. Specific sequences of the Sm and Sm-like (Lsm) proteins mediate their interaction with the spinal muscular atrophy disease gene product (SMN). J. Biol. Chem. 275, 26370–26375 (2000).

    Article  CAS  Google Scholar 

  25. Liu, Q. & Dreyfuss, G. A novel nuclear structure containing the survival of motor neurons protein. EMBO J. 15, 3555–3565 (1996).

    Article  CAS  Google Scholar 

  26. Jones, K. W. et al. Direct interaction of the spinal muscular atrophy disease protein SMN with the core snoRNP protein fibrillarin. J. Biol. Chem. (in the press).

  27. Pellizzoni, L., Baccon, J., Charroux, B. & Dreyfuss, G. The survival of motor neurons (SMN) protein interacts with the snoRNP proteins fibrillarin and GAR1. Curr. Biol. 11, 1079–1088 (2001).

    Article  CAS  Google Scholar 

  28. Murray, A. W. Cell cycle extracts. Methods Cell Biol. 36, 581–604 (1991).

    Article  CAS  Google Scholar 

  29. Lerner, E. A., Lerner, M. R., Hardin, J. A., Janeway, C. A. & Steitz, J. A. Monoclonal antibodies to nucleic acid-containing cellular constituents: probes for molecular biology and autoimmune disease. Proc. Natl. Acad. Sci. USA 78, 2737–2741 (1981).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to B. Laggerbauer and R. Terns for critically reading the manuscript, R. Lührmann and D. Schümperli for continuous discussion, O. Kelm and C. Kambach for providing reagents, and G. Sowa for technical support. This work was supported by the Boehringer Ingelheim Fonds (to D.B.), the Swiss National Science Foundation (no. 31-52619.97) (to R P.) and grants of the DFG (Fi-573/2-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utz Fischer.

Supplementary information

Supplementary figures and table

Figure S1 The amino acid sequence of p175. (PDF 777 kb)

Figure S2 No de novo methylation of Sm proteins during assembly of U1 snRNP in vitro.

Figure S3 UV crosslink of SmG to U1 snRNA.

Table 1 Identification of three novel components of SMN complexes NSCII and CSC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meister, G., Bühler, D., Pillai, R. et al. A multiprotein complex mediates the ATP-dependent assembly of spliceosomal U snRNPs. Nat Cell Biol 3, 945–949 (2001). https://doi.org/10.1038/ncb1101-945

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1101-945

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing