Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Glycine 384 is required for presenilin-1 function and is conserved in bacterial polytopic aspartyl proteases

Abstract

Endoproteolysis of β-amyloid precursor protein (βAPP) and Notch requires conserved aspartate residues in presenilins 1 and 2 (PS1 and PS2). Although PS1 and PS2 have therefore been proposed to be aspartyl proteases, no homology to other aspartyl proteases has been found. Here we identify homology between the presenilin active site and polytopic aspartyl proteases of bacterial origin, thus supporting the hypothesis that presenilins are novel aspartyl proteases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mutations at residue 384 affect PS1 endoproteolysis and γ-secretase processing of βAPP.
Figure 2: Effects of mutant PS1 derivatives on Aβ generation and Notch endoproteolysis.
Figure 3: The critical glycine 384 of presenilins is conserved in bacterial TFPPs.

Similar content being viewed by others

References

  1. Selkoe, D. J. Nature 399, A23–31 (1999).

    Article  CAS  Google Scholar 

  2. Brown, M. S., Ye, J., Rawson, R. B. & Goldstein, J. L. Cell 100, 391–398 (2000).

    Article  CAS  Google Scholar 

  3. Haass, C. & De Strooper, B. Science 286, 916–919 (1999).

    Article  CAS  Google Scholar 

  4. Niwa, M., Sidrauski, C., Kaufman, R. J. & Walter, P. Cell 99, 691–702 (1999).

    Article  CAS  Google Scholar 

  5. De Strooper, B. et al. Nature 391, 387–390 (1998).

    Article  CAS  Google Scholar 

  6. De Strooper, B. et al. Nature 398, 518–522 (1999).

    Article  CAS  Google Scholar 

  7. Wolfe, M. S. et al. Nature 398, 513–517 (1999).

    Article  CAS  Google Scholar 

  8. Steiner, H. et al. J. Biol. Chem. 274, 28669–28673 (1999).

    Article  CAS  Google Scholar 

  9. Kimberly, W. T., Xia, W., Rahmati, T., Wolfe, M. S. & Selkoe, D. J. J. Biol. Chem. 275, 3173–3178 (2000).

    Article  CAS  Google Scholar 

  10. Ray, W. J. et al. J. Biol. Chem. 274, 36801–36807 (1999).

    Article  CAS  Google Scholar 

  11. Capell, A. et al. Nature Cell Biol. 2, 205–211 (2000).

    Article  CAS  Google Scholar 

  12. Li, Y-M. et al. Nature 405, 689–694 (2000).

    Article  CAS  Google Scholar 

  13. Esler, W. P. et al. Nature Cell Biol. 2, 428–433 (2000).

    Article  CAS  Google Scholar 

  14. De Strooper, B. Nature 405, 627–628 (2000).

    Article  CAS  Google Scholar 

  15. Cruts, M. et al. Hum. Mol. Genet. 4, 2363–2371 (1995).

    Article  CAS  Google Scholar 

  16. De Jonghe, C. et al. Neurobiol. Dis. 6, 280–287 (1999).

    Article  CAS  Google Scholar 

  17. Thinakaran, G. et al. J. Biol. Chem. 272, 28415–28422 (1997).

    Article  CAS  Google Scholar 

  18. Steiner, H. et al. Biochemistry 38, 14600–14605 (1999).

    Article  CAS  Google Scholar 

  19. Murayama, O. et al. Neurosci. Lett. 265, 61–63 (1999).

    Article  CAS  Google Scholar 

  20. Steiner, H. et al. J. Biol. Chem. 274, 7615–7618 (1999).

    Article  CAS  Google Scholar 

  21. Song, W. et al. Proc. Natl Acad. Sci. USA 96, 6959–6963 (1999).

    Article  CAS  Google Scholar 

  22. Schroeter, E. H., Kisslinger, J. A. & Kopan, R. Nature 393, 382–386 (1998).

    Article  CAS  Google Scholar 

  23. Kulic, L. et al. Proc. Natl Acad. Sci. USA 97, 5913–5918 (2000).

    Article  CAS  Google Scholar 

  24. Huppert, S. S. et al. Nature 405, 966–970 (2000).

    Article  CAS  Google Scholar 

  25. LaPointe, C. F. & Taylor, R. K. J. Biol. Chem. 275, 1502–1510 (2000).

    Article  CAS  Google Scholar 

  26. Doan, A. et al. Neuron 17, 1023–1030 (1996).

    Article  CAS  Google Scholar 

  27. Citron, M. et al. Nature 360, 672–674 (1992).

    Article  CAS  Google Scholar 

  28. Wild-Bode, C. et al. J. Biol. Chem. 272, 16085–16088 (1997).

    Article  CAS  Google Scholar 

  29. Wiltfang, J. et al. Electrophoresis 18, 527–532 (1997).

    Article  CAS  Google Scholar 

  30. Steiner, H. et al. J. Biol. Chem. 273, 32322–32331 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Kopan for the NotchΔE cDNA, and members of our laboratory for critical discussion. This work was supported by the European Community and the Boehringer Ingelheim Pharma K.G. (grant to C.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Haass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steiner, H., Kostka, M., Romig, H. et al. Glycine 384 is required for presenilin-1 function and is conserved in bacterial polytopic aspartyl proteases. Nat Cell Biol 2, 848–851 (2000). https://doi.org/10.1038/35041097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35041097

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing