Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Function of microtubules in intercellular transport of plant virus RNA

Abstract

Cell-to-cell progression of tobacco mosaic virus (TMV) infection in plants depends on virus-encoded movement protein (MP). Here we show that a conserved sequence motif in tobamovirus MPs shares similarity with a region in tubulins that is proposed to mediate lateral contacts between microtubule protofilaments. Point mutations in this motif confer temperature sensitivity to microtubule association and viral-RNA intercellular-transport functions of the protein, indicating that MP-interacting microtubules are functionally involved in the transport of vRNA to plasmodesmata. Moreover, we show that MP interacts with microtubule-nucleation sites. Together, our results indicate that MP may mimic tubulin assembly surfaces to propel vRNA transport by a dynamic process that is driven by microtubule polymerization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Similarity between tobamovirus MPs and tubulins.
Figure 2: Local necrotic lesion assay.
Figure 3: Infection sites and subcellular distribution of wild-type and mutant MP–GFP in N. benthamiana at 22 °C.
Figure 4: Effect of temperature on intercellular transport of vRNA in N. benthamiana by virus-encoded wild-type and mutant MP–GFP.
Figure 5: Effect of temperature on the subcellular distribution of wild-type and mutant MP–GFP in epidermal cells at the leading edges of infection sites in N. benthamiana.
Figure 6: MP-containing microtubule complexes isolated from infected protoplasts are stable.
Figure 7: Absence of γ-tubulin from the centrosomal region in MP-transfected COS-7 cells.

Similar content being viewed by others

References

  1. Steeves, T. A. & Sussex, I. M. Patterns in plant development (Cambridge Univ. Press, Cambridge, UK, 1989).

    Book  Google Scholar 

  2. Van den Berg, C., Willemsen, V., Hage, W. & Scheres, B. Cell fate in the Arabidopsis root meristem determined by directional signalling. Nature 378, 62–65 (1995).

    Article  CAS  Google Scholar 

  3. Epel, B. Plasmodesmata: composition, structure and trafficking. Plant Mol. Biol. 26, 1343–1356 (1994).

    Article  CAS  Google Scholar 

  4. Perbal, M-C., Haughn, G., Saedler, H. & Schwarz-Sommer, Z. Non-autonomous function of Antirrhinum floral homeotic proteins DEFICIENS and GLOBOSA is exerted by their polar cell-to-cell trafficking. Development 122, 3433–3441 (1996).

    CAS  PubMed  Google Scholar 

  5. Lucas, W. J. et al. Selective trafficking of KNOTTED1 homeodomain protein and its RNA through plasmodesmata. Science 270, 1980–1983 (1995).

    Article  CAS  Google Scholar 

  6. Kühn, C., Franceschi, V. R., Schulz, A., Lemoine, R. & Frommer, W. B. Macromolecular trafficking indicated by localization and turnover of sucrose transporters in enucleate sieve elements. Science 275, 1298–1300 (1997).

    Article  Google Scholar 

  7. Voinnet, O. & Baulcombe, D. C. Systemic signalling in gene silencing. Nature 389, 553 (1997).

    Article  CAS  Google Scholar 

  8. Palauqui, J-C., Elmayan, T., Pollien, J-M. & Vaucheret, H. Systemic aquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J. 16, 4738–4745 (1997).

    Article  CAS  Google Scholar 

  9. Ding, B. Intercellular protein trafficking through plasmodesmata. Plant Mol. Biol. 38, 279–310 (1998).

    Article  CAS  Google Scholar 

  10. Jorgensen, R. A., Atkinson, R. G., Forster, R. L. & Lucas, W. J. An RNA-based information superhighway in plants. Science 279, 1486–1487 (1998).

    Article  CAS  Google Scholar 

  11. Gilbertson, R. L. & Lucas, W. J. How do viruses traffic on the `vascular highway'? Trends Plant Sci. 1, 260–268 (1996).

    Article  Google Scholar 

  12. Deom, C. M., Oliver, M. J. & Beachy, R. N. The 30-kilodalton gene product of tobacco mosaic virus potentiates virus movement. Science 237, 384–389 (1987).

    Article  Google Scholar 

  13. Deom, M. C., Lapidot, M. & Beachy, R. N. Plant virus movement proteins. Cell 69, 221–224 (1992).

    Article  CAS  Google Scholar 

  14. Heinlein, M., Epel, B. L., Padgett, H. S. & Beachy, R. N. Interaction of tobamovirus movement proteins with the plant cytoskeleton. Science 270, 1983–1985 (1995).

    Article  CAS  Google Scholar 

  15. Heinlein, M. et al. Changing patterns of localization of the tobacco mosaic virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection. Plant Cell 10, 1107–1120 (1998).

    Article  CAS  Google Scholar 

  16. Mas, P. & Beachy, R. N. Replication of tobacco mosaic virus on endoplasmic reticulum and role of the cytoskeleton and virus movement in intracellular distribution of viral RNA. J. Cell Biol. 147, 945–958 (1999).

    Article  CAS  Google Scholar 

  17. Bassell, G. & Singer, R. H. mRNA and cytoskeletal elements. Curr. Opin. Cell Biol. 9, 109–115 (1997).

    Article  CAS  Google Scholar 

  18. Jansen, R-P. RNA–cytoskeletal associations. FASEB J. 13, 455–466 (1999).

    Article  CAS  Google Scholar 

  19. Atabekov, J. G. & Taliansky, M. E. Expression of a plant virus-coded transport function by different viral genomes. Adv. Virus. Res. 38, 201–248 (1990).

    Article  CAS  Google Scholar 

  20. Barker, H. Invasion of non-phloem tissue in Nicotiana clevelandii by potato leafroll luteovirus is enhanced in plants also infected with potato Y potyvirus. J. Gen. Virol. 68, 1223–1227 (1987).

    Article  Google Scholar 

  21. Carr, R. J. & Kim, K. S. Evidence that bean golden mosaic virus invades non-phloem tissue in double infections with tobacco mosaic virus. J. Gen. Virol. 64, 2489–2492 (1983).

    Article  Google Scholar 

  22. Malyshenko, S. I. et al. Red clover mottle comovirus V-RNA spreads between cells in tobamovirus-infected tissues. J. Gen. Virol. 69, 407–412 (1993).

    Article  Google Scholar 

  23. Cooper, B., Lapidot, M., Heick, J. A., Dodds, J. A. & Beachy, R. N. A defective movement protein of TMV in transgenic plants confers resistance to multiple viruses whereas the functional analog increases susceptibility. Virology 206, 307–313 (1995).

    Article  CAS  Google Scholar 

  24. Deom, C. M., He, X. Z., Beachy, R. N. & Weissinger, A. K. Influence of heterologous tobamovirus movement protein and chimeric movement protein genes on cell-to-cell and long-distance movement. Virology 205, 198–209 (1994).

    Article  CAS  Google Scholar 

  25. Padgett, H. S. & Beachy, R. N. Analysis of a tobacco mosaic virus strain capable of overcoming N gene-mediated resistance. Plant Cell 5, 577–586 (1993).

    Article  CAS  Google Scholar 

  26. Nejidat, A. et al. Transfer of the movement protein gene between two tobamoviruses: influence on the local lesion development. Virology 180, 318–326 (1991).

    Article  CAS  Google Scholar 

  27. De Jong, W. & Ahlquist, P. A hybrid plant RNA virus made by transferring the noncapsid movement protein from a rod-shaped to an icosahedral virus is competent for systemic infection. Proc. Natl Acad. Sci. USA 89, 6808–6812 (1992).

    Article  CAS  Google Scholar 

  28. Saito, T., Imai, Y., Meshi, T. & Okada, Y. Interviral homologies of the 30k proteins of tobamoviruses. Virology 167, 653–656 (1988).

    CAS  PubMed  Google Scholar 

  29. Koonin, E. V., Mushegian, A. R., Ryabov, E. V. & Dolja, V. V. Diverse groups of plant RNA and DNA viruses share related movement proteins that may possess chaperone-like activity. J. Gen. Virol. 72, 2895–2903 (1991).

    Article  Google Scholar 

  30. Gribskov, M., Luthy, R. & Eisenberg, D. Profile analysis. Methods Enzymol. 183, 146–159 (1990).

    Article  CAS  Google Scholar 

  31. Bailey, T. I. & Elkan, C. in Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology 28–36 (AAAI, Menlo Park, California, 1994).

    Google Scholar 

  32. Nishiguchi, M., Motoyoshi, F. & Oshima, N. Behaviour of a temperature-sensitive strain of tobacco mosaic virus in tomato leaves and protoplasts. J. Gen. Virol. 39, 53–61 (1978).

    Article  Google Scholar 

  33. Ohno, T. et al. Single amino acid substitution in 30k protein of TMV defective in virus transport function. Virology 131, 255–258 (1983).

    Article  CAS  Google Scholar 

  34. Boyko, V., Ferralli, J. & Heinlein, M. Cell-to-cell movement of TMV RNA is temperature-dependent and corresponds to the association of movement protein with microtubules. Plant J. 22, 315–325 (2000).

    Article  CAS  Google Scholar 

  35. Kassanis, B. Some effects of high temperature on the susceptibility of plants to infection with viruses. Ann. Appl. Biol. 39, 358–369 (1952).

    Article  Google Scholar 

  36. McKinney, H. H. & Clayton, E. E. Genotype and temperature in relation to symtoms caused in Nicotiana by the mosaic virus. J. Hered. 36, 323–331 (1945).

    Article  CAS  Google Scholar 

  37. Takamatsu, K., Ishikawa, M., Meshi, T. & Okada, Y. Expression of bacterial chloramphenicol acetyltransferase gene in tobacco plants mediated by TMV-RNA. EMBO J. 6, 307–311 (1987).

    Article  CAS  Google Scholar 

  38. McLean, B. G., Zupan, J. & Zambryski, P. C. Tobacco mosaic virus movement protein associates with the cytoskeleton in tobacco plants. Plant Cell 7, 2101–2114 (1995).

    Article  CAS  Google Scholar 

  39. Waigmann, E., Lucas, W., Citovsky, V. & Zambryski, P. Direct functional assay for tobacco mosaic virus cell-to-cell movement protein and identification of a domain involved in increasing plasmodesmal permeability. Proc. Natl Acad. Sci. USA 91, 1433–1437 (1994).

    Article  CAS  Google Scholar 

  40. Paluh, J. L. et al. A mutation in γ-tubulin alters microtubule dynamics and organization and is synthetically lethal with the kinesin-like protein Pkl1p. Mol. Biol. Cell 11, 1225–1239 (2000).

    Article  CAS  Google Scholar 

  41. Nogales, E., Whittaker, M., Milligan, R. A. & Downing, K. H. High-resolution model of the microtubule. Cell 96, 70–88 (1999).

    Article  Google Scholar 

  42. Kahn, T. W. et al. Domains of the TMV movement protein involved in subcellular localization. Plant J. 15, 15–25 (1998).

    Article  CAS  Google Scholar 

  43. Schellenbaum, P., Vantard, M., Peter, C., Felous, A. & Lambert, A. M. Co-assembly properties of higher plant microtubule-associated proteins with purified brain and plant tubulins. Plant J. 32, 253–260 (1993).

    Article  Google Scholar 

  44. Margolis, R. L. & Job, D. in Microtubules (eds Hyams, J. S. & Lloyd, C. W.) 221–228 (Wiley-Liss, New York, 1994).

    Google Scholar 

  45. Rodionov, V., Nadezhdina, E. & Borisy, G. Centrosomal control of microtubule dynamics. Proc. Natl Acad. Sci. USA 96, 115–120 (1999).

    Article  CAS  Google Scholar 

  46. Cyr, R. J. & Palevitz, B. A. Organization of cortical microtubules in plant cells. Curr. Opin. Cell Biol. 7, 65–71 (1995).

    Article  CAS  Google Scholar 

  47. Johnson, M. S. & Overington, J. P. A structural basis for sequence comparisons. An evaluation of scoring methodologies. J. Mol. Biol. 233, 716–738 (1993).

    Article  CAS  Google Scholar 

  48. Burns, R. G. Analysis of gamma-tubulin sequences: implications for the functional role of gamma-tubulin. J. Cell Sci. 108, 2123–2130 (1995).

    CAS  Google Scholar 

  49. Kunkel, T. A., Roberts, J. D. & Zakour, R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154, 367–382 (1987).

    Article  CAS  Google Scholar 

  50. Chan, J., Rutten, T. & Lloyd, C. Isolation of microtubule-associated proteins from carrot cytoskeletons: a 120 kDa map decorates all four microtubule arrays and the nucleus. Plant J. 10, 251–259 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Hohn for suggestions during the preparation of the manuscript, and S. van Eeden for taking care of plants and phytotrons. This work was supported by the Novartis Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Heinlein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyko, V., Ferralli, J., Ashby, J. et al. Function of microtubules in intercellular transport of plant virus RNA. Nat Cell Biol 2, 826–832 (2000). https://doi.org/10.1038/35041072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35041072

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing