Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Identification of caveolin-1 in lipoprotein particles secreted by exocrine cells


Caveolin-1 is a protein component (of relative molecular mass 22,000) of the striated coat that decorates the cytoplasmic surface of caveolae membranes. Previous biochemical and molecular tests have indicated that caveolin-1 is an integral membrane protein that is co-translationally inserted into endoplasmic-reticulum membranes of fibroblast and epithelial cells such that its carboxy- and amino-terminal ends are in the cytoplasm. Here we identify caveolin-1 in the secretory pathway of exocrine cells. Secretion of caveolin-1 from pancreatic acinar cells and a transfected exocrine cell line, but not from Chinese hamster ovary cells, is stimulated by the secretagogues secretin, cholecystokinin and dexamethasone. The secreted caveolin-1 co-fractionates with apolipoproteins, indicating that it may be secreted in a complex with lipids.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Indirect immunofluorescence and immunogold localization of caveolin-1 and caveolin-2 in mouse pancreas.
Figure 2: Distribution of caveolin-1, protein, EGF receptor, amylase and ApoA1 in the supernatant and high-speed pellet fractions of rat pancreas (Pan) and human fibroblasts (Fibro).
Figure 3: Negative staining of the caveolin-rich fractions from the CsCl gradient, plasma HDL or plasma LDL.
Figure 4: Immunopurification of caveolin-1, ApoA1 and ApoE from soluble pancreas homogenates.
Figure 5: Stimulation of caveolin-1 secretion from rat and ApoA1-deficient mouse pancreas, and flotation of secreted rat caveolin-1 on CsCl gradients.
Figure 6: Secretion of transfected caveolin-1 as a lipoprotein by AR42J (a–c, h, i) cells but not CHO (d), fibroblast (e), endothelial (f) or lung epithelial (g) cells.
Figure 7: Immunocytochemical localization of caveolin-1 to secretory vesicles, and secretion of caveolin-1 and amylase from stimulated AR42J cells.


  1. Rothberg, K. G. et al. Caveolin, a protein component of caveolae membrane coats. Cell 68, 673–682 ( 1992).

    Article  CAS  Google Scholar 

  2. Peters, K.-R., Carley, W. W. & Palade, G. E. Endothelial plasmalemmal vesicles have a characteristic striped bipolar surface structure. J. Cell Biol. 101 , 2233–2238 (1985).

    Article  CAS  Google Scholar 

  3. Engelman, J. A. et al. Molecular genetics of the caveolin gene family: implications for human cancers, diabetes, Alzheimer disease, and muscular dystrophy. Am. J. Hum. Genet. 63, 1578–1587 (1998).

    Article  CAS  Google Scholar 

  4. Monier, S. et al. VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol. Biol. Cell 6, 911–927 ( 1995).

    Article  CAS  Google Scholar 

  5. Monier, S., Dietzen, D. J., Hastings, W. R., Lublin, D. M. & Kurzchalia, T. V. Oligomerization of VIP21-caveolin in vitro is stabilized by long chain fatty acylation or cholesterol. FEBS Lett. 388, 143–149 (1996).

    Article  CAS  Google Scholar 

  6. Sargiacomo, M. et al. Oligomeric structure of caveolin: implications for caveolae membrane organization. Proc. Natl Acad. Sci. USA 92 , 9407–9411 (1995).

    Article  CAS  Google Scholar 

  7. Fra, A. M., Williamson, E., Simons, K. & Parton, R. G. De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin . Proc. Natl Acad. Sci. USA 92, 8655– 8659 (1995).

    Article  CAS  Google Scholar 

  8. Li, S., Song, K. S., Koh, S. S., Kikuchi, A. & Lisanti, M. P. Baculovirus-based expression of mammalian caveolin in Sf21 insect cells. A model system for the biochemical and morphological study of caveolae biogenesis. J. Biol. Chem. 271, 28647–28654 (1996).

    Article  CAS  Google Scholar 

  9. Glenney, J. R. The sequence of human caveolin reveals identity with VIP21, a component of transport vesicles. FEBS Lett. 314, 45– 48 (1992).

    Article  CAS  Google Scholar 

  10. Dietzen, D. J., Hastings, W. R. & Lublin, D. M. Caveolin is palmitoylated on multiple cysteine residues. Palmitoylation is not necessary for localization of caveolin to caveolae. J. Biol. Chem. 270, 6838–6842 (1995).

    Article  CAS  Google Scholar 

  11. Dupree, P., Parton, R. G., Raposo, G., Kurzchalia, T. V. & Simons, K. Caveolae and sorting in the trans-Golgi network of epithelial cells. EMBO J. 12, 1597–1605 (1993).

    Article  CAS  Google Scholar 

  12. Song, S. K. et al. Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J. Biol. Chem. 271, 9690–9697 (1996).

    Article  CAS  Google Scholar 

  13. Kurzchalia, T. V. et al. VIP21, a 21-kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles. J. Cell Biol. 118, 1003–1014 (1992).

    Article  CAS  Google Scholar 

  14. Anderson, R. G. W. The caveolae membrane system. Annu. Rev. Biochem. 67 , 199–225 (1998).

    Article  CAS  Google Scholar 

  15. Chang, W.-J., Rothberg, K. G., Kamen, B. A. & Anderson, R. G. W. Lowering the cholesterol content of MA104 cells inhibits receptor mediated transport of folate. J. Cell Biol. 118, 63–69 (1992).

    Article  CAS  Google Scholar 

  16. Murata, M. et al. Identification of caveolin-1 as a fatty acid binding protein . Proc. Natl Acad. Sci. USA 92, 10339– 10343 (1995).

    Article  CAS  Google Scholar 

  17. Trigatti, B., Anderson, R. G. W. & Gerber, G. A role for caveolin in transport of cholesterol from ER to plasma membrane. Biochem. Biophys. Res. Commun. 255, 34–39 (1999).

    Article  CAS  Google Scholar 

  18. Smart, E. J., Ying, Y.-S., Donzell, W. C. & Anderson, R. G. W. A role for caveolin in transport of cholesterol from ER to plasma membrane . J. Biol. Chem. 271, 29427– 29435 (1996).

    Article  CAS  Google Scholar 

  19. Smart, E. J., Ying, Y.-U., Conrad, P. A. & Anderson, R. G. W. Caveolin moves from caveolae to the Golgi apparatus in response to cholesterol oxidation. J. Cell Biol. 127, 1185– 1197 (1994).

    Article  CAS  Google Scholar 

  20. Conrad, P. A., Smart, E. J., Ying, Y.-S., Anderson, R. G. W. & Bloom, G. S. Caveolin cycles between plasma membrane caveolae and the Golgi complex by microtubule-dependent and microtubule-independent steps. J. Cell Biol. 131, 1424– 1433 (1995).

    Article  Google Scholar 

  21. Ridgway, N. D., Dawson, P. A., Ho, Y. K., Brown, M. S. & Goldstein, J. L. Translocation of oxysterol binding protein to Golgi apparatus triggered by ligand binding. J. Cell Biol. 116, 307–319 (1992).

    Article  CAS  Google Scholar 

  22. Christophe, J. Pancreatic tumoral cell line AR42J: an amphicrine model. Am. J. Physiol. 266, G963–G971 (1994).

    CAS  PubMed  Google Scholar 

  23. Engelman, J. A. et al. Recombinant expression of caveolin-1 in oncogenically transformed cells abrogates anchorage-independent growth. J. Biol. Chem. 272, 16374–16381 (1997).

    Article  CAS  Google Scholar 

  24. Blobel, G. & Dobberstein, B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma . J. Cell Biol. 67, 835– 851 (1975).

    Article  CAS  Google Scholar 

  25. Matlack, K. E., Mothes, W. & Rapoport, T. A. Protein translocation: tunnel vision. Cell 92, 381–390 ( 1998).

    Article  CAS  Google Scholar 

  26. Uittenbogaard, A., Ying, Y. & Smart, E. J. Characterization of a cytosolic heat-shock protein-caveolin chaperone complex. Involvement in cholesterol trafficking. J. Biol. Chem. 273, 6525–6532 ( 1998).

    Article  CAS  Google Scholar 

  27. Trigatti, B. L., Mangroo, D. & Gerber, G. E. Photoaffinity labeling and fatty acid permeation in 3T3-L1 adipocytes. J. Biol. Chem. 266, 22621–22625 (1991).

    CAS  PubMed  Google Scholar 

  28. Fielding, C. J., Bist, A. & Fielding, P. E. Caveolin mRNA levels are up-regulated by free cholesterol and down-regulated by oxysterols in fibroblast monolayers. Proc. Natl Acad. Sci. USA 94, 3753–3758 (1997).

    Article  CAS  Google Scholar 

  29. Hailstones, D., Sleer, L. S., Parton, R. G. & Stanley, K. K. Regulation of caveolin and caveolae by cholesterol in MDCK cells. J. Lipid. Res. 39, 369–379 (1998).

    CAS  PubMed  Google Scholar 

  30. Okamoto, T., Schlegel, A., Scherer, P. E. & Lisanti, M. P. Caveolins, a family of scaffolding proteins for organizing ‘‘preassembled signaling complexes’’ at the plasma membrane. J. Biol. Chem. 273, 5419–5422 ( 1998).

    Article  CAS  Google Scholar 

  31. Ko, Y. G., Liu, P., Pathak, R. K., Craig, L. C. & Anderson, R. G. Early effects of pp60(v-src) kinase activation on caveolae. J. Cell. Biochem. 71, 524– 535 (1998).

    Article  CAS  Google Scholar 

  32. Kongshaug, M., Moan, J. & Brown, S. B. The distribution of porphyrins with different tumour localising ability among human plasma proteins. Br. J. Cancer 59, 184–188 (1989).

    Article  CAS  Google Scholar 

  33. Roth, J. Postembedding labeling on Lowicryl K4M tissue sections: detection and modification of cellular components. Methods Cell Biol. 31, 513–551 (1989).

    Article  CAS  Google Scholar 

  34. Tokuyasu, K. T. Immunochemistry on ultrathin frozen sections. Histochem. J. 12, 381–403 (1980).

    Article  CAS  Google Scholar 

Download references


We thank M. Zhu for valuable technical assistance; S. Knight for administrative assistance; D. Spady for his assistance with the ApoA1-deficient mice; and M. Brown and J. Goldstein for helpful suggestions during the preparation of the manuscript. This work was supported by grants from the NIH (HL20948 and GM52016) and by the Perot Family Foundation. T.M. was supported by a postdoctoral fellowship from the Deutsche Forschungsgemeinschaft.

Correspondence and requests for materials should be addressed to R.G.W.A.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Richard G.W. Anderson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, P., Li, WP., Machleidt, T. et al. Identification of caveolin-1 in lipoprotein particles secreted by exocrine cells. Nat Cell Biol 1, 369–375 (1999).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing