Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

De novo generation of a PrPSc-like conformation in living cells


Conformational conversion of the cellular PrPC protein to PrPSc is a central aspect of the prion diseases, but how PrP initially converts to this conformation remains a mystery. Here we show that PrP expressed in the yeast cytoplasm, instead of the endoplasmic reticulum, acquires the characteristics of PrPSc, namely detergent insolubility and a distinct pattern of protease resistance. Neuroblastoma cells cultured under reducing, glycosylation-inhibiting conditions produce PrP with the same characteristics. We therefore describe what is, to our knowledge, the first conversion of full-length PrP in a heterologous system, show the importance of reducing and deglycosylation conditions in PrP conformational transitions, and suggest a model for initiating events in sporadic and inherited prion diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of the Kar2–PrP fusion protein in yeast.
Figure 2: Analysis of PrP proteins expressed in the yeast cytoplasm.
Figure 3: Analysis of proteinase-K-resistant fragments from the yeast cytoplasm with epitope-specific antibodies.
Figure 4: Analysis of mouse PrP from neuroblastoma cells treated with DTT and tunicamycin.


  1. Prusiner, S. B. Prions. Proc. Natl Acad. Sci. USA 95, 13363 –13383 (1998).

    Article  CAS  Google Scholar 

  2. Weissmann, C. Molecular biology of prion disease. Trends Cell Biol. 4, 10 (1994).

    Article  CAS  Google Scholar 

  3. Caughey, B. & Chesebro, B. Prion protein and the transmissible spongiform encephalopathies. Trends Cell Biol. 7, 56–62 (1997).

    Article  CAS  Google Scholar 

  4. Bolton, D. C., McKinley, M. P. & Prusiner, S. B. Identification of a protein that purifies with the scrapie prion. Science 218, 1309– 1311 (1982).

    Article  CAS  Google Scholar 

  5. Bueler, H. et al. Mice devoid of PrP are resistant to scrapie. Cell 73, 1339–1347 ( 1993).

    Article  CAS  Google Scholar 

  6. Horwich, A. L. & Weissman, J. S. Deadly conformations — protein misfolding in prion disease. Cell 89, 499–510 (1997).

    Article  CAS  Google Scholar 

  7. Chesebro, B. BSE and prions: uncertainties about the agent. Science 279, 42–43 (1998).

    Article  CAS  Google Scholar 

  8. Collinge, J., Sidle, K. C., Meads, J., Ironside, J. & Hill, A. F. Molecular analysis of prion strain variation and the aetiology of ‘new variant’ CJD. Nature 383, 685–690 (1996).

    Article  CAS  Google Scholar 

  9. Telling, G. C. et al. Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity. Science 274, 2079–2082 ( 1996).

    Article  CAS  Google Scholar 

  10. Bolton, D. C., Bendheim, P. E., Marmostein, A. D. & Potempska, A. Isolation and structural studies of the intact scrapie agent protein. Arch. Biochem. Biophys. 258, 579–590 (1987).

    Article  CAS  Google Scholar 

  11. Caughey, B., Kocisko, D. A., Raymond, G. J. & Lansbury, P. T. Jr Aggregates of scrapie-associated prion protein induce the cell-free conversion of protease-sensitive prion protein to the protease- resistant state. Chem. Biol. 2, 807–817 ( 1995).

    Article  CAS  Google Scholar 

  12. Kocisko, D. A., Lansbury, P. T. Jr & Caughey, B. Partial unfolding and refolding of scrapie-associated prion protein: evidence for a critical 16-kDa C-terminal domain. Biochemistry 35, 13434–13442 (1996).

    Article  CAS  Google Scholar 

  13. Prusiner, S. B., Groth, D. F., Bolton, D. C., Kent, S. B. & Hood, L. E. Purification and structural studies of a major scrapie prion protein. Cell 38, 127–134 (1984).

    Article  CAS  Google Scholar 

  14. Prusiner, S. B. et al. Transgenetic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell 63, 673–686 (1990).

    Article  CAS  Google Scholar 

  15. Kocisko, D. A. et al. Species specificity in the cell-free conversion of prion protein to protease-resistant forms: a model for the scrapie species barrier. Proc. Natl Acad. Sci. USA 92, 3923– 3927 (1995).

    Article  CAS  Google Scholar 

  16. Holkeri, H., Paunola, E., Jamsa, E. & Makarow, M. Dissection of the translocation and chaperoning functions of yeast BiP/Kar2p in vivo . J. Cell Sci. 111, 749– 757 (1998).

    CAS  PubMed  Google Scholar 

  17. Kopito, R. R. ER quality control: the cytoplasmic connection. Cell 88, 427–430 (1997).

    Article  CAS  Google Scholar 

  18. Kopito, R. R. Biosynthesis and degradation of CFTR. Physiol. Rev. (Suppl.) 79, S167–S173 (1999).

    Article  CAS  Google Scholar 

  19. Johnston, J. A., Ward, C. L. & Kopito, R. R. Aggresomes: a cellular response to misfolded proteins . J. Cell Biol. 143, 1883– 1898 (1998).

    Article  CAS  Google Scholar 

  20. Hegde, R. S. et al. A transmembrane form of the prion protein in neurodegenerative disease. Science 279, 827– 834 (1998).

    Article  CAS  Google Scholar 

  21. Mehlhorn, I. et al. High-level expression and characterization of a purified 142-residue polypeptide of the prion protein. Biochemistry 35, 5528–5537 (1996).

    Article  CAS  Google Scholar 

  22. Zhang, H. et al. Physical studies of conformational plasticity in a recombinant prion protein. Biochemistry 36, 3543– 3553 (1997).

    Article  CAS  Google Scholar 

  23. Jackson, G. S. et al. Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science 283, 1935–1937 (1999).

    Article  CAS  Google Scholar 

Download references


We thank B. Caughey and G. Raymont for providing PrPSc, neuroblastoma cells, epitope-specific antibodies and advice; R. Kascsak for 3F4 antibody; D. Harris for mouse PrP with the 3F4 epitope; D. Ng for pDN182 plasmid; K. Runge forYEpFAT4 plasmid; and members of the Lindquist laboratory for comments. This work was supported by the NIH and the Howard Hughes Medical Institute.

Correspondence and requests for materials should be addressed to S.L.

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ma, J., Lindquist, S. De novo generation of a PrPSc-like conformation in living cells. Nat Cell Biol 1, 358–361 (1999).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing