Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Formation of AP-3 transport intermediates requires Vps41 function

Abstract

Transport of a subset of membrane proteins to the yeast vacuole requires the function of the AP-3 adaptor protein complex. To define the molecular requirements of vesicular transport in this pathway, we used a biochemical approach to analyse the formation and content of the AP-3 transport intermediate. A vam3tsf (vacuolar t-SNARE) mutant blocks vesicle docking and fusion with the vacuole and causes the accumulation of 50–130-nanometre membrane vesicles, which we isolated and showed by biochemical analysis and immunocytochemistry to contain both AP-3 adaptors and alkaline phosphatase (ALP) pathway cargoes. Inactivation of AP-3 or the protein Vps41 blocks formation of this vesicular intermediate. Vps41 binds to the AP-3 δ-adaptin subunit, suggesting that they function together in the formation of ALP pathway transport intermediates at the late Golgi.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Enrichment and co-localization of ALP pathway cargoes and AP-3.
Figure 2: Immunoisolation of an ALP pathway membrane intermediate from Accudenz gradient fractions.
Figure 3: Morphology and immunocytochemistry of immunoisolated vesicles from vam3 tsf cells.
Figure 4: Enrichment of AP-3-coated vesicles by sucrose-gradient fractionation.
Figure 5: Biochemical analysis of VPS41 and AP-3 mutant cells.
Figure 6: Formation of the vesicular fraction depends on AP-3 or Vps41 function.
Figure 7: Vps41 binds to Apl5 in vivo and in vitro .
Figure 8: Vps41 functions together with AP-3 in the ALP pathway.

Similar content being viewed by others

References

  1. Schekman, R. & Orci, L. Coat proteins and vesicle budding. Science 271, 1526–1533 ( 1996).

    Article  CAS  Google Scholar 

  2. Schmid, S. L. Clathrin-coated vesicle formation and protein sorting: an integrated process . Annu. Rev. Biochem. 66, 511– 548 (1997).

    Article  CAS  Google Scholar 

  3. Pfeffer, S. R. Transport vesicle docking: SNAREs and associates. Annu. Rev. Cell Dev. Biol. 12, 441–461 ( 1996).

    Article  CAS  Google Scholar 

  4. Pfeffer, S. R. Transport-vesicle targeting: tethers before SNAREs. Nature Cell Biol. 1, 17–22 ( 1999).

    Article  Google Scholar 

  5. Cowles, C. R., Snyder, W. B., Burd, C. G. & Emr, S. D. An alternative Golgi to vacuole delivery pathway in yeast: identification of a sorting determinant and required transport component. EMBO J. 16, 2769–2782 ( 1997).

    Article  CAS  Google Scholar 

  6. Burd, C. G., Babst, M. & Emr, S. D. Novel pathways, membrane coats and PI kinase regulation in yeast lysosomal trafficking. Semin. Cell Dev. Biol. 9, 527–533 (1998).

    Article  CAS  Google Scholar 

  7. Piper, R. C., Bryant, N. J. & Stevens, T. H. The membrane protein alkaline phosphatase is delivered to the vacuole by a route that is distinct from the VPS-dependent pathway . J. Cell Biol. 138, 531– 545 (1997).

    Article  CAS  Google Scholar 

  8. Stack, J. H., Horazdovsky, B. & Emr, S. D. Receptor-mediated protein sorting to the vacuole in yeast. Annu. Rev. Cell Dev. Biol. 11, 1–33 (1995).

    Article  CAS  Google Scholar 

  9. Cowles, C. R., Odorizzi, G., Payne, G. S. & Emr, S. D. The AP-3 adaptor complex is essential for cargo-selective transport to the yeast vacuole. Cell 91, 109– 118 (1997).

    Article  CAS  Google Scholar 

  10. Odorizzi, G., Cowles, C. R. & Emr, S. D. The AP-3 complex: a coat of many colours. Trends Cell Biol. 8, 282–288 (1998).

    Article  CAS  Google Scholar 

  11. Stepp, J. D., Huang, K. & Lemmon, S. K. The yeast adaptor protein complex, AP-3, is essential for the efficient delivery of alkaline phosphatase by the alternate pathway to the vacuole. J. Cell Biol. 139, 1761– 1774 (1997).

    Article  CAS  Google Scholar 

  12. Darsow, T., Burd, C. G. & Emr, S. D. Acidic di-leucine motif essential for AP-3-dependent sorting and restriction of the functional specificity of the Vam3 vacuolar t-SNARE. J. Cell Biol. 142, 913– 922 (1998).

    Article  CAS  Google Scholar 

  13. Vowels, J. J. & Payne, G. S. A dileucine-like sorting signal directs transport into an AP-3- dependent, clathrin-independent pathway to the yeast vacuole. EMBO J. 17, 2482– 2493 (1998).

    Article  CAS  Google Scholar 

  14. Kantheti, P. et al. Mutation in AP-3 delta in the mocha mouse links endosomal transport to storage deficiency in platelets, melanosomes, and synaptic vesicles . Neuron 21, 111–122 (1998).

    Article  CAS  Google Scholar 

  15. Feng, L. et al. The beta3A subunit gene (Ap3b1) of the AP-3 adaptor complex is altered in the mouse hypopigmentation mutant pearl, a model for Hermansky-Pudlak syndrome and night blindness. Hum. Mol. Genet. 8, 323–330 (1999).

    Article  CAS  Google Scholar 

  16. Simpson, F., Peden, A. A., Christopoulou, L. & Robinson, M. S. Characterization of the adaptorrelated protein complex, AP-3. J. Cell Biol. 137, 835–845 (1997).

    Article  CAS  Google Scholar 

  17. Dell'Angelica, E. C., Shotelersuk, V., Aguilar, R.C., Gahl, W. A. & Bonifacino, J.S. Altered trafficking of lysosomal proteins in Hermansky-Pudlak syndrome due to mutations in the beta 3A subunit of the AP-3 adaptor. Mol. Cell 3, 11–21 (1999).

    Article  CAS  Google Scholar 

  18. Darsow, T., Rieder, S. E. & Emr, S. D. A multispecificity syntaxin homologue, Vam3, essential for autophagic and biosynthetic protein transport to the vacuole. J. Cell Biol. 138, 517–529 (1997).

    Article  CAS  Google Scholar 

  19. Rieder, S. E. & Emr, S. D. A novel RING finger protein complex essential for a late step in protein transport to the yeast vacuole. Mol. Biol. Cell 8, 2307–2327 (1997).

    Article  CAS  Google Scholar 

  20. Graham, T. R. & Emr, S. D. Compartmental organization of Golgi-specific protein modification and vacuolar protein sorting events defined in a yeast sec18 (NSF) mutant. J. Cell Biol. 114, 207 –218 (1991).

    Article  CAS  Google Scholar 

  21. Wilcox, C. A. & Fuller, R. S. Posttranslational processing of the prohormone-cleaving Kex2 protease in the Saccharomyces cerevisiae secretory pathway. J. Cell Biol. 115, 297 –307 (1991).

    Article  CAS  Google Scholar 

  22. Honing, S., Sandoval, I. V. & von Figura, K. A di-leucine-based motif in the cytoplasmic tail of LIMP-II and tyrosinase mediates selective binding of AP-3. EMBO J. 17, 1304–1314 ( 1998).

    Article  CAS  Google Scholar 

  23. Dell"Angelica, E. C., Ooi, C. E. & Bonifacino, J. S. Beta3A-adaptin, a subunit of the adaptor-like complex AP-3. J. Biol. Chem. 272, 15078– 15084 (1997).

    Article  CAS  Google Scholar 

  24. Barlowe, C. et al. COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77, 895–907 (1994).

    Article  CAS  Google Scholar 

  25. Bednarek, S. Y. et al. COPI- and COPII-coated vesicles bud directly from the endoplasmic reticulum in yeast. Cell 83, 1183– 21196 (1995).

    Article  CAS  Google Scholar 

  26. Orci, L., Glick, B. S. & Rothman, J. E. A new type of coated vesicular carrier that appears not to contain clathrin: its possible role in protein transport within the Golgi stack. Cell 46, 171– 184 (1986).

    Article  CAS  Google Scholar 

  27. Rexach, M. F., Latterich, M. & Schekman, R. W. Characteristics of endoplasmic reticulum-derived transport vesicles. J. Cell Biol. 126, 1133 –1148 (1994).

    Article  CAS  Google Scholar 

  28. Bonifacino, J. S. & Dell"Angelica, E. C. Molecular bases for the recognition of tyrosine-based sorting signals. J. Cell Biol. 145, 923–926 (1999).

    Article  CAS  Google Scholar 

  29. Musacchio, A. et al. Functional organization of clathrin in coats: combining electron cryomicroscopy and X-ray crystallography. Mol. Cell 3, 761–760 (1999).

    Article  CAS  Google Scholar 

  30. Lupas, A., Van Dyke, M. & Stock, J. Predicting coiled coils from protein sequences. Science 252, 1162–1164 (1991).

    Article  CAS  Google Scholar 

  31. Nathke, I.S. et al. Folding and trimerization of clathrin subunits at the triskelion hub. Cell 68, 899–910 (1992).

    Article  CAS  Google Scholar 

  32. Ybe, J. A. et al. Clathrin self-assembly is mediated by a tandemly repeated superhelix. Nature 399, 371– 375 (1999).

    Article  CAS  Google Scholar 

  33. Robinson, J. S., Klionsky, D. J., Banta, L. M. & Emr, S. D. Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol. Cell. Biol. 8, 4936–4948 (1988).

    Article  CAS  Google Scholar 

  34. Stack, J. H., DeWald, D. B., Takegawa, K. & Emr, S. D. Vesicle-mediated protein transport: regulatory interactions between the Vps15 protein kinase and the Vps34 PtdIns 3-kinase essential for protein sorting to the vacuole in yeast. J. Cell Biol. 129, 321–334 (1995).

    Article  CAS  Google Scholar 

  35. Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 ( 1998).

    Article  CAS  Google Scholar 

  36. Stan, R. V. et al. Immunoisolation and partial characterization of endothelial plasmalemmal vesicles (caveolae). Mol. Biol. Cell 8 , 595–605 (1997).

    Article  CAS  Google Scholar 

  37. Ito, H., Fukuda, Y., Murata, K. & Kimura, A. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153, 163–168 ( 1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Rehling, P. et al. The import receptor for the peroxisomal targeting signal 2 (PTS2) in Saccharomyces cerevisiae is encoded by the PAS7 gene. EMBO J. 15, 2901–2913 ( 1996).

    Article  CAS  Google Scholar 

  39. Wendland, B. & Emr, S. D. Pan1p, yeast eps15, functions as a multivalent adaptor that coordinates protein-protein interactions essential for endocytosis. J. Cell Biol. 141, 71– 84 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. McQuistan and J.M. McCaffery for expert assistance with electron microscopy analysis. Affinity-purified Kex2 antibodies were a gift from G. Payne. We thank members of the Emr laboratory for helpful discussions, particularly A. Wurmser, J. Gary and M. Babst for critical reading of the manuscript. P.R. is supported by a postdoctoral fellowship from the Deutsche Forschungsgemeinschaft (Re 1384/1-1) and D.J.K. is an Associate of the Howard Hughes Medical Institute. This work was supported by NIH grant CA58689 (to S.D.E.). S.D.E. is an Investigator with the Howard Hughes Medical Institute.

Correspondence and requests for materials should be addressed to S.D.E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott D. Emr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehling, P., Darsow, T., Katzmann, D. et al. Formation of AP-3 transport intermediates requires Vps41 function. Nat Cell Biol 1, 346–353 (1999). https://doi.org/10.1038/14037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/14037

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing