Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polypyrimidine tract-binding protein promotes insulin secretory granule biogenesis

Abstract

Pancreatic β-cells store insulin in secretory granules that undergo exocytosis upon glucose stimulation. Sustained stimulation depletes β-cells of their granule pool, which must be quickly restored. However, the factors promoting rapid granule biogenesis are unknown. Here we show that β-cell stimulation induces the nucleocytoplasmic translocation of polypyrimidine tract-binding protein (PTB). Activated cytosolic PTB binds and stabilizes mRNAs encoding proteins of secretory granules, thus increasing their translation, whereas knockdown of PTB expression by RNA interference (RNAi) results in the depletion of secretory granules. These findings may provide insight for the understanding and treatment of diabetes, in which insulin secretion is typically impaired.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Glucose stimulation of pro-ICA512 expression in insulinoma and rat islet cells.
Figure 2: Stabilization of rat ICA512 mRNA by PTB.
Figure 3: Stability of PC1/3, PC2 and CPE mRNAs.
Figure 4: Glucose-regulated luciferase expression in INS-1 cells upon inclusion of PTB-binding sites.
Figure 5: Depletion of secretory granules in INS-1 cells upon knockdown of PTB.
Figure 6: Nucleocytoplasmic translocation of PTB upon glucose stimulation of β-cells.

Similar content being viewed by others

References

  1. Borgonovo, B. et al. Neurosecretion competence, an independently regulated trait of the neurosecretory cell phenotype. J. Biol. Chem. 273, 34683–34686 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Guest, P.C., Rhodes, C.J. & Hutton, J.C. Regulation of the biosynthesis of insulin-secretory-granule proteins. Co-ordinate translational control is exerted on some, but not all, granule matrix constituents. Biochem. J. 257, 431–437 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alarcon, C., Lincoln, B. & Rhodes, C.J. The biosynthesis of the subtilisin-related proprotein convertase PC3, but no that of the PC2 convertase, is regulated by glucose in parallel to proinsulin biosynthesis in rat pancreatic islets. J. Biol. Chem. 268, 4276–4280 (1993).

    CAS  PubMed  Google Scholar 

  4. Martin, S.K., Carroll, R., Benig, M. & Steiner, D.F. Regulation by glucose of the biosynthesis of PC2, PC3 and proinsulin in (ob/ob) mouse islets of Langerhans. FEBS Lett. 356, 279–282 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Giddings, S.J., Chirgwin, J. & Permutt, M.A. Effects of glucose on proinsulin messenger RNA in rats in vivo. Diabetes 31, 624–629 (1982).

    Article  CAS  PubMed  Google Scholar 

  6. Permutt, M.A. & Kipnis, D.M. Insulin biosynthesis. I. On the mechanism of glucose stimulation. J. Biol. Chem. 247, 1194–1199 (1972).

    CAS  PubMed  Google Scholar 

  7. Itoh, N. & Okamoto, H. Translational control of proinsulin synthesis by glucose. Nature 283, 100–102 (1980).

    Article  CAS  PubMed  Google Scholar 

  8. Welsh, M., Scherberg, N., Gilmore, R. & Steiner, D.F. Translational control of insulin biosynthesis. Evidence for regulation of elongation, initiation and signal-recognition-particle-mediated translational arrest by glucose. Biochem J. 235, 459–467 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Welsh, M., Nielsen, D.A., MacKrell, A.J. & Steiner, D.F. Control of insulin gene expression in pancreatic β-cells and in an insulin-producing cell line, RIN-5F cells. II. Regulation of insulin mRNA stability. J. Biol. Chem. 260, 13590–13594 (1985).

    CAS  PubMed  Google Scholar 

  10. Tillmar, L., Carlsson, C. & Welsh, N. Control of insulin mRNA stability in rat pancreatic islets. Regulatory role of a 3′-untranslated region pyrimidine-rich sequence. J. Biol. Chem. 277, 1099–1106 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Tillmar, L. & Welsh, N. Hypoxia may increase rat insulin mRNA levels by promoting binding of the polypyrimidine tract-binding protein (PTB) to the pyrimidine-rich insulin mRNA 3′-untranslated region. Mol. Med. 8, 263–272 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Garcia-Blanco, M.A., Jamison, S.F. & Sharp, P.A. Identification and purification of a 62,000-dalton protein that binds specifically to the polypyrimidine tract of introns. Genes Dev. 3, 1874–1886 (1989).

    Article  CAS  PubMed  Google Scholar 

  13. Valcarcel, J. & Gebauer, F. Post-transcriptional regulation: the dawn of PTB. Curr. Biol. 7, R705–R708 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Hellen, C.U. et al. A cytoplasmic 57-kDa protein that is required for translation of picornavirus RNA by internal ribosomal entry is identical to the nuclear pyrimidine tract-binding protein. Proc. Natl Acad. Sci. USA 90, 7642–7646 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cote, C.A. et al. A Xenopus protein related to hnRNP I has a role in cytoplasmic RNA localization. Mol. Cell 4, 431–437 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Moreira, A. et al. The upstream sequence element of the C2 complement poly(A) signal activates mRNA 3′ end formation by two distinct mechanisms. Genes Dev. 12, 2522–2534 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hamilton, B.J., Genin, A., Cron, R.Q. & Rigby, W.F.C. Delineation of a novel pathway that regulates CD154 (CD40 ligand) expression. Mol. Cell. Biol. 23, 510–525 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gil, A., Sharp, P.A., Jamison, S.F. & Garcia-Blanco, M.A. Characterization of cDNAs encoding the polypyrimidine tract-binding protein. Genes Dev. 5, 1224–1236 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Ghetti, A., Pinol-Roma, S., Michael, W.M., Morandi, C. & Dreyfuss, G. hnRNP I, the polypyrimidine tract-binding protein: distinct nuclear localization and association with hnRNAs. Nucleic Acids Res. 20, 3671–3678 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Solimena, M. et al. ICA 512, an autoantigen of type I diabetes, is an intrinsic membrane protein of neurosecretory granules. EMB0 J. 15, 2102–2114 (1996).

    Article  CAS  Google Scholar 

  21. Ort, T. et al. Dephosphorylation of β2-syntrophin and Ca2+/mu-calpain-mediated cleavage of ICA512 upon stimulation of insulin secretion. EMBO J. 20, 4013–4023 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee, M.S., Dirkx, R.J., Solimena, M. & Dannies, P.S. Stabilization of the receptor protein tyrosine phosphatase-like protein ICA512 in GH4C1 cells upon treatment with estradiol, insulin, and epidermal growth factor. Endocrinology 139, 2727–2733 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Gosert, R., Chang, K.H., Rijnbrand, R., Yi, M., Sangar, D.V. & Lemon, S.M. Transient expression of cellular polypyrimidine-tract binding protein stimulates cap-independent translation directed by both picornaviral and flaviviral internal ribosome entry sites in vivo. Mol. Cell Biol. 20, 1583–1595 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Bothwell, A.L. et al. Murine polypyrimidine tract binding protein. Purification, cloning, and mapping of the RNA binding domain. J. Biol. Chem. 266, 24657–24663 (1991).

    CAS  PubMed  Google Scholar 

  26. Schatz, H., Nierle, C. & Pfeiffer, E.F. (Pro-)insulin biosynthesis and release of newly synthesized (pro-)insulin from isolated islets of rat pancreas in the presence of amino acids and sulphonylureas. Eur. J. Clin. Invest. 5, 477–485 (1975).

    CAS  PubMed  Google Scholar 

  27. Nielsen, D.A., Welsh, M., Casadaban, M.J. & Steiner, D.F. Control of insulin gene expression in pancreatic β-cells and in an insulin-producing cell line, RIN-5F cells. I. Effects of glucose and cyclic AMP on the transcription of insulin mRNA. J. Biol. Chem. 260, 13585–13589 (1985).

    CAS  PubMed  Google Scholar 

  28. Drucker, D.J., Philippe, J., Mojsov, S., Chick, W.L. & Habener, J.F. Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc. Natl Acad. Sci. USA 84, 3434–3438 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xie, J., Lee, J.A., Kress, T.L., Mowry, K.L. & Black, D.L. Protein kinase A phosphorylation modulates transport of the polypyrimidine tract-binding protein. Proc. Natl Acad. Sci. USA 100, 8776–8781 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu, G. et al. Insulin mediates glucose-stimulated phosphorylation of PHAS-I by pancreatic beta cells. An insulin-receptor mechanism for autoregulation of protein synthesis by translation. J. Biol. Chem. 273, 4485–4491 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Kim, T., Tao-Cheng, J.-H., Eiden, L.E. & Loh, Y.P. Chromogranin A, an on/off switch controlling dense-core secretory granule biogenesis. Cell 106, 499–509 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Day, R. & Gorr, S.U. Secretory granule biogenesis and chromogranin A: master gene, on/off switch or assembly factor? Trends Endocrinol. Metab. 14, 10–13 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Malosio, M.L., Giordano, T., Laslop, A. & Meldolesi, J.J. Dense-core granules: a specific hallmark of the neuronal/neurosecretory phenotype. J. Cell Sci. 117, 743–749 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Gold, G., Gishizky, M.L. & Grodsky, G.M. Evidence that glucose 'marks' β cells resulting in preferential release of newly synthesized insulin. Science 218, 56–58 (1982).

    Article  CAS  PubMed  Google Scholar 

  35. Halban, P.A. Differential rates of release of newly synthesized and of stored insulin from pancreatic islets. Endocrinology 110, 1183–1188 (1982).

    Article  CAS  PubMed  Google Scholar 

  36. Gotoh, M., Maki, T., Kiyoizumi, T., Satomi, S. & Monaco, A.P. An improved method for isolation of mouse pancreatic islets. Transplantation 40, 437–438 (1985).

    Article  CAS  PubMed  Google Scholar 

  37. Asfari, M. et al. Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines. Endocrinology 130, 167–178 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Velasco, A., Hendricks, L., Moremen, K.W., Tulsiani, D.R., Touster, O. & Farquhar, M.G. Cell type-dependent variations in the subcellular distribution of α-mannosidase I and II. J. Cell Biol. 122, 39–51 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Saraste, J. & Svensson, K. Distribution of the intermediate elements operating in ER to Golgi transport. J. Cell Sci. 100, 415–430 (1991).

    CAS  PubMed  Google Scholar 

  40. Wang, Z., Day, N., Trifillis, P. & Kiledjian, M. An mRNA stability complex functions with poly(A)-binding protein to stabilize mRNA in vitro. Mol. Cell. Biol. 19, 4552–4560 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Steinbrenner, H., Nguyen, T.B., Wohlrab, U., Scherbaum, W.A. & Seissler, J. Effect of proinflammatory cytokines on gene expression of the diabetes-associated autoantigen IA-2 in INS-1 cells. Endocrinology 143, 3839–3845 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. De Camilli, C. Walch-Solimena and E. Ullu for critical reading of the manuscript, R. Jahn, W. Huttner, K. Moremen, A. Helenius and J. Saraste for antibodies, M. Kolpe and R. Meisterfeld for help with islet isolation and insulin radioimmunoassay, F. Theissig for preparing islet sections, F. Bucholz for advice on RNAi, K. Scheckel for providing Jurkat cells, C. Echeverri and L. Buffa for siRNA oligonucleotides, K. Pfriem for excellent secretarial assistance and M. Füssel for support. We are also very grateful to the reviewers, whose criticisms greatly improved this article. This work was supported by grants from the A. von Humboldt Foundation and the Bundesministerium für Bildung und Forschung (BMBF) to M.S. and by a Telethon Post-Doctoral Fellowship to B.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Solimena.

Ethics declarations

Competing interests

The authors have a patent application pending.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knoch, KP., Bergert, H., Borgonovo, B. et al. Polypyrimidine tract-binding protein promotes insulin secretory granule biogenesis. Nat Cell Biol 6, 207–214 (2004). https://doi.org/10.1038/ncb1099

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1099

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing