Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The transmembrane protein XFLRT3 forms a complex with FGF receptors and promotes FGF signalling

Abstract

Fibroblast growth factors (FGFs) signal through high-affinity tyrosine kinase receptors to regulate a diverse range of cellular processes, including cell growth, differentiation and migration, as well as cell death1,2,3,4. Here we identify XFLRT3, a member of a leucine-rich-repeat transmembrane protein family, as a novel modulator of FGF signalling. XFLRT3 is co-expressed with FGFs, and its expression is both induced after activation and downregulated after inhibition of FGF signalling. In gain- and loss-of function experiments, FLRT3 and FLRT2 phenocopy FGF signalling in Xenopus laevis. XFLRT3 signalling results in phosphorylation of ERK and is blocked by MAPK phosphatase 1, but not by expression of a dominant-negative phosphatidyl inositol 3-OH kinase (PI(3)K) mutant. XFLRT3 interacts with FGF receptors (FGFRs) in co-immunoprecipitation experiments in vitro and in bioluminescence resonance energy transfer assays in vivo. The results indicate that XFLRT3 is a transmembrane modulator of FGF–MAP kinase signalling in vertebrates.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and expression pattern of XFLRT3.
Figure 2: XFLRT3 functions in the FGF signalling pathway.
Figure 4: Interaction of XFLRT3 and Xenopus FGFRs.
Figure 3: XFLRT3 and XFLRT2 are required for FGF signalling.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Slack, J.M., Isaacs, H.V., Song, J., Durbin, L. & Pownall, M.E. The role of fibroblast growth factors in early Xenopus development. Biochem. Soc. Symp. 62, 1–12 (1996).

    CAS  PubMed  Google Scholar 

  2. Martin, G.R. The roles of FGFs in the early development of vertebrate limbs. Genes Dev. 12, 1571–1586 (1998).

    Article  CAS  Google Scholar 

  3. Friesel, R. & Maciag, T. Fibroblast growth factor prototype release and fibroblast growth factor receptor signaling. Thromb. Haemost. 82, 748–754 (1999).

    Article  CAS  Google Scholar 

  4. Groth, C. & Lardelli, M. The structure and function of vertebrate fibroblast growth factor receptor 1. Int. J. Dev. Biol. 46, 393–400 (2002).

    CAS  PubMed  Google Scholar 

  5. Lacy, S.E., Bonnemann, C.G., Buzney, E.A. & Kunkel, L.M. Identification of FLRT1, FLRT2, and FLRT3: a novel family of transmembrane leucine-rich repeat proteins. Genomics 62, 417–426 (1999).

    Article  CAS  Google Scholar 

  6. Christen, B. & Slack, J.M. FGF-8 is associated with anteroposterior patterning and limb regeneration in Xenopus. Dev. Biol. 192, 455–466 (1997).

    Article  CAS  Google Scholar 

  7. Fürthauer, M., Reifers, F., Brand, M., Thisse, B. & Thisse, C. sprouty4 acts in vivo as a feedback-induced antagonist of FGF signaling in zebrafish. Development 128, 2175–2186 (2001).

    PubMed  Google Scholar 

  8. Fürthauer, M., Lin, W., Ang, S.L., Thisse, B. & Thisse, C. Sef is a feedback-induced antagonist of Ras/MAPK-mediated FGF signalling. Nature Cell Biol. 4, 170–174 (2002).

    Article  Google Scholar 

  9. Tsang, M., Friesel, R., Kudoh, T. & Dawid, I.B. Identification of Sef, a novel modulator of FGF signalling. Nature Cell Biol. 4, 165–169 (2002).

    Article  CAS  Google Scholar 

  10. Niehrs, C. & Meinhardt, H. Modular feedback. Nature 417, 35–36 (2002).

    Article  CAS  Google Scholar 

  11. Amaya, E., Musci, T.J. & Kirschner, M.W. Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell 66, 257–570 (1991).

    Article  CAS  Google Scholar 

  12. Isaacs, H.V., Tannahill, D. & Slack, J.M. Expression of a novel FGF in the Xenopus embryo. A new candidate inducing factor for mesoderm formation and anteroposterior specification. Development 114, 711–720 (1992).

    CAS  PubMed  Google Scholar 

  13. Smith, J.C., Price, B.M., Green, J.B., Weigel, D. & Herrmann, B.G. Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell 67, 79–87 (1991).

    Article  CAS  Google Scholar 

  14. Neilson, K.M. & Friesel, R. Ligand-independent activation of fibroblast growth factor receptors by point mutations in the extracellular, transmembrane, and kinase domains. J. Biol. Chem. 271, 25049–25057 (1996).

    Article  CAS  Google Scholar 

  15. Whitman, M. & Melton, D.A. Involvement of p21ras in Xenopus mesoderm induction. Nature 357, 252–254 (1992).

    Article  CAS  Google Scholar 

  16. Carballada, R., Yasuo, H. & Lemaire, P. Phosphatidylinositol-3 kinase acts in parallel to the ERK MAP kinase in the FGF pathway during Xenopus mesoderm induction. Development 128, 35–44 (2001).

    CAS  PubMed  Google Scholar 

  17. Gotoh, Y., Masuyama, N., Suzuki, A., Ueno, N. & Nishida, E. Involvement of the MAP kinase cascade in Xenopus mesoderm induction. EMBO J. 14, 2491–2498 (1995).

    Article  CAS  Google Scholar 

  18. Bhushan, A., Chen, Y. & Vale, W. Smad7 inhibits mesoderm formation and promotes neural cell fate in Xenopus embryos. Dev. Biol. 200, 260–268 (1998).

    Article  CAS  Google Scholar 

  19. Heasman, J., Kofron, M. & Wylie, C. β-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach. Dev. Biol. 222, 124–134 (2000).

    Article  CAS  Google Scholar 

  20. Xu, Y., Piston, D.W. & Johnson, C.H. A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc. Natl Acad. Sci. USA 96, 151–156 (1999).

    Article  CAS  Google Scholar 

  21. Angers, S. et al. Detection of β2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc. Natl Acad. Sci. USA 97, 3684–3689 (2000).

    CAS  PubMed  Google Scholar 

  22. Pellegrini, L., Burke, D.F., von Delft, F., Mulloy, B. & Blundell, T.L. Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature 407, 1029–1034 (2000).

    Article  CAS  Google Scholar 

  23. Schlessinger, J. et al. Crystal structure of a ternary FGF–FGFR–heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol. Cell 6, 743–750 (2000).

    Article  CAS  Google Scholar 

  24. Gawantka, V., Delius, H., Hirschfeld, K., Blumenstock, C. & Niehrs, C. Antagonizing the Spemann organizer: role of the homeobox gene Xvent-1. EMBO J. 14, 6268–6279 (1995).

    Article  CAS  Google Scholar 

  25. Glinka, A., Wu, W., Onichtchouk, D., Blumenstock, C. & Niehrs, C. Head induction by simultaneous repression of Bmp and Wnt signalling in Xenopus. Nature 389, 517–519 (1997).

    Article  CAS  Google Scholar 

  26. Glinka, A. et al. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391, 357–362 (1998).

    Article  CAS  Google Scholar 

  27. Sheldahl, L.C., Park, M., Malbon, C.C. & Moon, R.T. Protein kinase C is differentially stimulated by Wnt and Frizzled homologs in a G-protein-dependent manner. Curr. Biol. 9, 695–698 (1999).

    Article  CAS  Google Scholar 

  28. Rupp, R.A., Snider, L. & Weintraub, H. Xenopus embryos regulate the nuclear localization of XMyoD. Genes Dev. 8, 1311–1223 (1994).

    Article  CAS  Google Scholar 

  29. Mao, B. et al. Kremen proteins are Dickkopf receptors that regulate Wnt/β-catenin signalling. Nature 417, 664–667 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Materials were kindly provided by E. Amaya, A. Bhushan, M. Eilers, W. Franke, R. Friesel, P. Lemaire, T. Knoch, L. Kunkel, J. Nathans, H. Okamoto, T. Pieler, J. Slack, N. Ueno and M. Whitman. R.B. received a PhD fellowship of the Deutsche Forschungsgemeinschaft. We thank U. Fenger and K. Kappes for in situ hybridizations, and G. Davidson and B. Mao for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Niehrs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information, Fig. S1

Supplementary Information, Fig. S2 (PDF 512 kb)

Supplementary Information, Fig. S3

Supplementary Information, Fig. S4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böttcher, R., Pollet, N., Delius, H. et al. The transmembrane protein XFLRT3 forms a complex with FGF receptors and promotes FGF signalling. Nat Cell Biol 6, 38–44 (2004). https://doi.org/10.1038/ncb1082

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1082

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing