Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway

Abstract

After inhibition of cytochrome c oxidase by nitric oxide1,2,3, astrocytes maintain energy production by upregulating glycolysis4,5 — a response which does not seem to be available to neurons. Here, we show that in astrocytes, after inhibition of respiration by nitric oxide, there is a rapid, cyclic GMP-independent increase in the activity of 6-phosphofructo-1-kinase (PFK1), a master regulator of glycolysis6, and an increase in the concentration of its most powerful positive allosteric activator7, fructose-2,6-bisphosphate (F2,6P2). In neurons, nitric oxide failed to alter F2,6P2 concentration or PFK1 activity. This failure could be accounted for by the much lower amount of 6-phosphofructo-2-kinase (PFK2, the enzyme responsible for F2,6P2 biosynthesis8) in neurons. Indeed, full activation of neuronal PFK1 was achieved by adding cytosol from nitric oxide-treated astrocytes. Furthermore, using the small interfering RNA (siRNA) strategy9, we demonstrated that the rapid activation of glycolysis by nitric oxide is dependent on phosphorylation of the energy charge-sensitive AMP-activated protein kinase, resulting in activation of PFK2 and protection of cells from apoptosis. Thus the virtual absence of PFK2 in neurons may explain their extreme sensitivity to energy depletion and degeneration4,5,10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nitric oxide activates glycolysis through PFK1.
Figure 2: Nitric oxide triggers allosteric PFK1 activation through PFK2.
Figure 3: Activation of glycolysis by nitric oxide is cyclic GMP-independent and may involve AMPK phosphorylation.
Figure 4: AMPK mediates nitric oxide-dependent glycolytic activation and prevents apoptotic cell death.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Cleeter, M.W.J., Cooper, J.M., Darley-Usmar, V.M., Moncada, S. & Schapira, A.H. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett. 345, 50–54 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Brown, G.C. & Cooper, C.E. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett. 356, 295–298 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Schweizer, M. & Richter, C. Nitric oxide potently and reversibly deenergizes mitochondria. Biochem. Biophys. Res. Commun. 204, 169–175 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Bolaños, J.P., Peuchen, S., Heales, S.J.R., Land, J.M. & Clark, J.B. Nitric oxide-mediated inhibition of the mitochondrial respiratory chain in cultured astrocytes. J. Neurochem. 63, 910–916 (1994).

    Article  PubMed  Google Scholar 

  5. Almeida, A., Almeida, J., Bolaños, J.P. & Moncada, S. Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically-generated ATP in astrocyte protection. Proc. Natl Acad. Sci. USA 98, 15294–15299 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Uyeda, K. Phosphofructokinase. Adv. Enzymol. Relat. Areas Mol. Biol. 48, 193–244 (1979).

    CAS  PubMed  Google Scholar 

  7. Van Schaftingen, E., Lederer, B., Bartrons, R. & Hers, H.G. A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose 2,6-bisphosphate. Eur J Biochem 129, 191–195 (1982).

    Article  CAS  PubMed  Google Scholar 

  8. Hue, L. & Rider, M.H. Role of fructose 2,6-bisphosphate in the control of glycolysis in mammalian tissues. Biochem. J. 245, 313–324 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brummelkamp, T.R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Brorson, J.R., Schumacker, P.T. & Zhang, H.P. Nitric oxide acutely inhibits neuronal energy production. J. Neurosci. 19, 147–158 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sanchez-Martinez, C., Estevez, A.M. & Aragon, J.J. Phosphofructokinase C isozyme from ascites tumor cells: cloning, expression, and properties. Biochem Biophys Res Commun. 271, 635–640 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Kawaguchi, T., Veech, R.L. & Uyeda, K. Regulation of energy metabolism in macrophages during hypoxia. Roles of fructose 2,6-bisphosphate and ribose 1,5-bisphosphate. J. Biol. Chem. 276, 28554–28561 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Hers, H.G. & Van Schaftingen, E. Fructose 2,6-bisphosphate 2 years after its discovery. Biochem. J. 206, 1–12 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pilkis, S.J., Claus, T.H., Kurland, I.J. & Lange, A.J. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase: a metabolic signaling enzyme. Annu. Rev. Biochem. 64, 799–835 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Okar, D.A. et al. PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends Biochem. Sci. 26, 30–35 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Perez, J.X. et al. Overexpression of fructose 2,6-bisphosphatase decreases glycolysis and delays cell cycle progression. Am. J. Physiol. 279, C1359–C1365 (2000).

    Article  CAS  Google Scholar 

  17. Manzano, A. et al. Molecular cloning, expression, and chromosomal localization of a ubiquitously expressed human 6-phosphofructo-2-kinase/ fructose-2, 6-bisphosphatase gene (PFKFB3). Cytogenet. Cell Genet. 83, 214–217 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Hirata, T., Kato, M., Okamura, N., Fukasawa, M. & Sakakibara, R. Expression of human placental-type 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase in various cells and cell lines. Biochem Biophys Res Commun. 242, 680–684 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Sakakibara, R. et al. Characterization of a human placental fructose-6-phosphate, 2-kinase/fructose-2,6-bisphosphatase. J. Biochem. 122, 122–128 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Chesney, J. et al. An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element: role in tumor cell glycolysis and the Warburg effect. Proc. Natl Acad. Sci. USA 96, 3047–3052 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Navarro-Sabate, A. et al. The human ubiquitous 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene (PFKFB3): promoter characterization and genomic structure. Gene 264, 131–138 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Ambrosio, S., Ventura, F., Rosa, J.L. & Bartons, R. Fructose 2,6-bisphosphate in hypoglycemic rat brain. J. Neurochem. 57, 200–203 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Hardie, D.G. & Carling, D. The AMP-activated protein kinase-fuel gauge of the mammalian cell. Eur. J. Biochem. 246, 259–273 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Marsin, A.S. et al. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr. Biol. 10, 1247–1255 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Ishikawa, E., Ogushi, S., Ishikawa, T. & Uyeda, K. Activation of mammalian phosphofructokinases by ribose 1,5-bisphosphate. J. Biol. Chem. 265, 18875–18878 (1990).

    CAS  PubMed  Google Scholar 

  26. Gutmann, I. & Wahlefeld, A.W. in Methods of Enzymatic Analysis (ed. Bergmeyer, H.U.) 1464–1468 (Verlag Chemie GmbH, Weinheim, 1974).

    Google Scholar 

  27. Van Schaftingen, E., Lederer, B., Bartrons, R. & Hers, H.G. A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose 2,6-bisphosphate. Eur J Biochem 129, 191–195 (1982).

    Article  CAS  PubMed  Google Scholar 

  28. Lowry, O.H., Rosebrough, N.J., Lewis-Farr, A. & Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by FIS (A.A.), Fundación CNIC (S.M.) and Ministerio de Ciencia y Tecnología (SAF2001/1961; J.P.B.). S.M. is partially funded by the Medical Research Council (U.K.). Technical assistance from M. Delgado-Esteban and M. Resch (CNIC, Spain) and M. C. Alguero (Hospital Universitario de Salamanca, Spain) are greatly appreciated. We are grateful to A. Higgs for critical evaluation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador Moncada.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almeida, A., Moncada, S. & Bolaños, J. Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nat Cell Biol 6, 45–51 (2004). https://doi.org/10.1038/ncb1080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1080

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing