Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mammalian formin-1 participates in adherens junctions and polymerization of linear actin cables

Abstract

During epithelial sheet formation, linear actin cables assemble at nascent adherens junctions. This process requires α-catenin and actin polymerization, although the underlying mechanism is poorly understood. Here, we show that formin-1 interacts with α-catenin, localizes to adherens junctions and nucleates unbranched actin filaments. Furthermore, disruption of the α-catenin–formin-1 interaction blocks assembly of radial actin cables and perturbs intercellular adhesion. A fusion protein of the β-catenin-binding domain of α-catenin with the actin polymerization domains of formin-1 rescues formation of adherens junctions and associated actin cables in α-catenin-null keratinocytes. These findings provide new insight into how α-catenin orchestrates actin dynamics during intercellular junction formation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Formin 1 is a putative interacting protein for α-catenin.
Figure 2: The localization of Formin-1 is dependent on α-catenin.
Figure 3: Formin-1 and α-catenin interact specifically.
Figure 4: Formin-1 (FH1-FH2) nucleates actin filaments in vitro.
Figure 5: The formin-1 α-cat-BD perturbs intercellular junctions.
Figure 6: Rescuing intercellular junctions in α-catenin-null keratinocytes.

References

  1. Pollard, T.D., Blanchoin, L. & Mullins, R.D. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29, 545–576 (2000).

    Article  CAS  Google Scholar 

  2. Mullins, R.D., Stafford, W.F. & Pollard, T.D. Structure, subunit topology, and actin-binding activity of the Arp2/3 complex from Acanthamoeba. J. Cell Biol. 136, 331–343 (1997).

    Article  CAS  Google Scholar 

  3. Welch, M.D., Rosenblatt, J., Skoble, J., Portnoy, D.A. & Mitchison, T.J. Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science 281, 105–108 (1998).

    Article  CAS  Google Scholar 

  4. Winter, D.C., Choe, E.Y. & Li, R. Genetic dissection of the budding yeast Arp2/3 complex: a comparison of the in vivo and structural roles of individual subunits. Proc. Natl Acad. Sci. USA 96, 7288–7293 (1999).

    Article  CAS  Google Scholar 

  5. Welch, M.D. & Mullins, R.D. Cellular control of actin nucleation. Annu. Rev. Cell Dev. Biol. 18, 247–288 (2002).

    Article  CAS  Google Scholar 

  6. Pruyne, D. et al. Role of formins in actin assembly: nucleation and barbed-end association. Science 297, 612–615 (2002).

    Article  CAS  Google Scholar 

  7. Sagot, I., Klee, S.K. & Pellman, D. Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nature Cell Biol. 4, 42–50 (2002).

    Article  CAS  Google Scholar 

  8. Sagot, I., Rodal, A.A., Moseley, J., Goode, B.L. & Pellman, D. An actin nucleation mechanism mediated by Bni1 and profilin. Nature Cell Biol. 4, 626–631 (2002).

    Article  CAS  Google Scholar 

  9. Evangelista, M., Pruyne, D., Amberg, D.C., Boone, C. & Bretscher, A. Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nature Cell Biol. 4, 260–269 (2002).

    Article  CAS  Google Scholar 

  10. Kovar, D.R., Kuhn, J.R., Tichy, A.L. & Pollard, T.D. The fission yeast cytokinesis formin Cdc12p is a barbed end actin filament capping protein gated by profilin. J. Cell Biol. 161, 875–887 (2003).

    Article  CAS  Google Scholar 

  11. Li, F. & Higgs, H.N. The mouse formin mDia1 is a potent actin nucleation factor regulated by autoinhibition. Curr. Biol. 13, 1335–1340 (2003).

    Article  CAS  Google Scholar 

  12. Chan, D.C., Wynshaw-Boris, A. & Leder, P. Formin isoforms are differentially expressed in the mouse embryo and are required for normal expression of fgf-4 and shh in the limb bud. Development 121, 3151–3162 (1995).

    CAS  PubMed  Google Scholar 

  13. Zuniga, A. & Zeller, R. Gli3 (Xt) and formin (ld) participate in the positioning of the polarising region and control of posterior limb-bud identity. Development 126, 13–21 (1999).

    CAS  PubMed  Google Scholar 

  14. Lee, L., Klee, S.K., Evangelista, M., Boone, C. & Pellman, D. Control of mitotic spindle position by the Saccharomyces cerevisiae formin Bni1p. J. Cell Biol. 144, 947–961 (1999).

    Article  CAS  Google Scholar 

  15. Heil-Chapdelaine, R.A., Adames, N.R. & Cooper, J.A. Formin' the connection between microtubules and the cell cortex. J. Cell Biol. 144, 809–811 (1999).

    Article  CAS  Google Scholar 

  16. Leader, B. et al. Formin-2, polyploidy, hypofertility and positioning of the meiotic spindle in mouse oocytes. Nature Cell Biol. 4, 921–928 (2002).

    Article  CAS  Google Scholar 

  17. Tolliday, N., VerPlank, L. & Li, R. Rho1 directs formin-mediated actin ring assembly during budding yeast cytokinesis. Curr. Biol. 12, 1864–1870 (2002).

    Article  CAS  Google Scholar 

  18. Geneste, O., Copeland, J.W. & Treisman, R. LIM kinase and Diaphanous cooperate to regulate serum response factor and actin dynamics. J. Cell Biol. 157, 831–838 (2002).

    Article  CAS  Google Scholar 

  19. Lew, D.J. Formin' actin filament bundles. Nature Cell Biol. 4, E29–E30 (2002).

    Article  CAS  Google Scholar 

  20. Wallar, B.J. & Alberts, A.S. The formins: active scaffolds that remodel the cytoskeleton. Trends Cell Biol. 13, 435–446 (2003).

    Article  CAS  Google Scholar 

  21. Yonemura, S., Itoh, M., Nagafuchi, A. & Tsukita, S. Cell-to-cell adherens junction formation and actin filament organization: similarities and differences between non-polarized fibroblasts and polarized epithelial cells. J. Cell Sci. 108, 127–142 (1995).

    CAS  PubMed  Google Scholar 

  22. Adams, C.L., Chen, Y.T., Smith, S.J. & Nelson, W.J. Mechanisms of epithelial cell–cell adhesion and cell compaction revealed by high-resolution tracking of E-cadherin–green fluorescent protein. J. Cell Biol. 142, 1105–1119 (1998).

    Article  CAS  Google Scholar 

  23. Vasioukhin, V., Bauer, C., Yin, M. & Fuchs, E. Directed actin polymerization is the driving force for epithelial cell–cell adhesion. Cell 100, 209–219 (2000).

    Article  CAS  Google Scholar 

  24. Vaezi, A., Bauer, C., Vasioukhin, V. & Fuchs, E. Actin cable dynamics and Rho/Rock orchestrate a polarized cytoskeletal architecture in the early steps of assembling a stratified epithelium. Dev. Cell 3, 367–381 (2002).

    Article  CAS  Google Scholar 

  25. Adams, C.L. & Nelson, W.J. Cytomechanics of cadherin-mediated cell–cell adhesion. Curr. Opin. Cell Biol. 10, 572–577 (1998).

    Article  CAS  Google Scholar 

  26. Harden, N. Signaling pathways directing the movement and fusion of epithelial sheets: lessons from dorsal closure in Drosophila. Differentiation 70, 181–203 (2002).

    Article  CAS  Google Scholar 

  27. Tepass, U. Adherens junctions: new insight into assembly, modulation and function. Bioessays 24, 690–695 (2002).

    Article  CAS  Google Scholar 

  28. Bear, J.E. et al. Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell 109, 509–521 (2002).

    Article  CAS  Google Scholar 

  29. Kovacs, E.M., Ali, R.G., McCormack, A.J. & Yap, A.S. E-cadherin homophilic ligation directly signals through Rac and phosphatidylinositol 3-kinase to regulate adhesive contacts. J. Biol. Chem. 277, 6708–6718 (2002).

    Article  CAS  Google Scholar 

  30. Sahai, E. & Marshall, C.J. ROCK and Dia have opposing effects on adherens junctions downstream of Rho. Nature Cell Biol. 4, 408–415 (2002).

    Article  CAS  Google Scholar 

  31. Vasioukhin, V., Bauer, C., Degenstein, L., Wise, B. & Fuchs, E. Hyperproliferation and defects in epithelial polarity upon conditional ablation of α-catenin in skin. Cell 104, 605–617 (2001).

    Article  CAS  Google Scholar 

  32. Huber, O., Krohn, M. & Kemler, R. A specific domain in α-catenin mediates binding to β-catenin or plakoglobin. J. Cell Sci. 110, 1759–1765 (1997).

    CAS  PubMed  Google Scholar 

  33. Pokutta, S. & Weis, W.I. Structure of the dimerization and β-catenin-binding region of α-catenin. Mol. Cell 5, 533–543 (2000).

    Article  CAS  Google Scholar 

  34. Yang, J., Dokurno, P., Tonks, N.K. & Barford, D. Crystal structure of the M-fragment of α-catenin: implications for modulation of cell adhesion. EMBO J. 20, 3645–3656 (2001).

    Article  CAS  Google Scholar 

  35. Pokutta, S., Drees, F., Takai, Y., Nelson, W.J. & Weis, W.I. Biochemical and structural definition of the l-afadin- and actin-binding sites of α-catenin. J. Biol. Chem. 277, 18868–18874 (2002).

    Article  CAS  Google Scholar 

  36. Woychik, R.P., Maas, R.L., Zeller, R., Vogt, T.F. & Leder, P. 'Formins': proteins deduced from the alternative transcripts of the limb deformity gene. Nature 346, 850–853 (1990).

    Article  CAS  Google Scholar 

  37. Maas, R.L., Zeller, R., Woychik, R.P., Vogt, T.F. & Leder, P. Disruption of formin-encoding transcripts in 2 mutant limb deformity alleles. Nature 346, 853–855 (1990).

    Article  CAS  Google Scholar 

  38. Wang, C.C., Chan, D.C. & Leder, P. The mouse formin (Fmn) gene: genomic structure, novel exons, and genetic mapping. Genomics 39, 303–311 (1997).

    Article  CAS  Google Scholar 

  39. Jackson-Grusby, L., Kuo, A. & Leder, P. A variant limb deformity transcript expressed in the embryonic mouse limb defines a novel formin. Genes Dev. 6, 29–37 (1992).

    Article  CAS  Google Scholar 

  40. Caldwell, J.E., Heiss, S.G., Mermall, V. & Cooper, J.A. Effects of CapZ, an actin capping protein of muscle, on the polymerization of actin. Biochemistry 28, 8506–8514 (1989).

    Article  CAS  Google Scholar 

  41. MacLean-Fletcher, S. & Pollard, T.D. Mechanism of action of cytochalasin B on actin. Cell 20, 329–341 (1980).

    Article  CAS  Google Scholar 

  42. Khokha, M.K., Hsu, D., Brunet, L.J., Dionne, M.S. & Harland, R.M. Gremlin is the BMP antagonist required for maintenance of Shh and Fgf signals during limb patterning. Nature Genet. 34, 303–307 (2003).

    Article  CAS  Google Scholar 

  43. Nakano, K. et al. Distinct actions and cooperative roles of ROCK and mDIa in Rho small G protein-induced reorganization of the actin cytoskeleton in Madin-Darby Canine Kidney cells. Mol. Biol. Cell 10, 2481–2491 (1999).

    Article  CAS  Google Scholar 

  44. Evangelista, M. et al. Bni1p, a yeast formin linking cdc42p and the actin cytoskeleton during polarized morphogenesis. Science 276, 118–122 (1997).

    Article  CAS  Google Scholar 

  45. Imamura, H. et al. Bni1p and Bnr1p: downstream targets of the Rho family small G-proteins which interact with profilin and regulate actin cytoskeleton in Saccharomyces cerevisiae. EMBO J. 16, 2745–2755 (1997).

    Article  CAS  Google Scholar 

  46. Dong, Y., Pruyne, D. & Bretscher, A. Formin-dependent actin assembly is regulated by distinct modes of Rho signaling in yeast. J. Cell Biol. 161, 1081–1092 (2003).

    Article  CAS  Google Scholar 

  47. Watanabe, N. et al. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J. 16, 3044–3056 (1997).

    Article  CAS  Google Scholar 

  48. Kohno, H. et al. Bni1p implicated in cytoskeletal control is a putative target of Rho1p small GTP binding protein in Saccharomyces cerevisiae. EMBO J. 15, 6060–6068 (1996).

    Article  CAS  Google Scholar 

  49. Alberts, A.S. Identification of a carboxyl-terminal diaphanous-related formin homology protein autoregulatory domain. J. Biol. Chem. 276, 2824–2830 (2001).

    Article  CAS  Google Scholar 

  50. Perez-Moreno, M., Jamora, C. & Fuchs, E. Sticky business: orchestrating cellular signals at adherens junctions. Cell 112, 535–548 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

E.F. is an investigator of the Howard Hughes Medical Institute. We thank V. Vasioukhin for valuable discussions in the early stages of this work, W. Lowry for assistance with the actin polymerization studies, A. North and A. Vaezi for their assistance with Deltavision imaging, and P. Leder, A. Alberts, S. Narumiya and L. Cantley for reagents. This work was supported by the National Institutes of Health (RO1-AR27883 to E. F.) and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine Fuchs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobielak, A., Pasolli, H. & Fuchs, E. Mammalian formin-1 participates in adherens junctions and polymerization of linear actin cables. Nat Cell Biol 6, 21–30 (2004). https://doi.org/10.1038/ncb1075

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1075

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing