Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rac–MEKK3–MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock

Abstract

Sensing the osmolarity of the environment is a critical response for all organisms. Whereas bacteria will migrate away from high osmotic conditions, most eukaryotic cells are not motile and use adaptive metabolic responses for survival1,2,3,4,5. The p38 MAPK pathway is a crucial mediator of survival during cellular stress6,7,8,9. We have discovered a novel scaffold protein that binds to actin, the GTPase Rac, and the upstream kinases MEKK3 and MKK3 in the p38 MAPK phospho-relay module. RNA interference (RNAi) demonstrates that MEKK3 and the scaffold protein are required for p38 activation in response to sorbitol-induced hyperosmolarity. FRET identifies a cytoplasmic complex of the MEKK3 scaffold protein that is recruited to dynamic actin structures in response to sorbitol treatment. Through its ability to bind actin, relocalize to Rac-containing membrane ruffles and its obligate requirement for p38 activation in response to sorbitol, we have termed this protein osmosensing scaffold for MEKK3 (OSM). The Rac–OSM–MEKK3–MKK3 complex is the mammalian counterpart of the CDC42–STE50–STE11–Pbs2 complex in Saccharomyces cerevisiae that is required for the regulation of p38 activity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MEKK3 is required for osmostress-induced p38 MAPK activation and interacts with OSM.
Figure 2: OSM modulates MKK3 activation and hyperosmolar-induced p38 activation.
Figure 3: MEKK3 and OSM are recruited to ruffle-like structures after sorbitol treatment.
Figure 4: OSM interacts with the Rho family GTPase Rac.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. O'Neill, W.C. Physiological significance of volume-regulatory transporters. Am. J. Physiol. 276, C995–C1011 (1999).

    Article  CAS  Google Scholar 

  2. Waldegger, S. & Lang, F. Cell volume and gene expression. J. Membr. Biol. 162, 95–100 (1998).

    Article  CAS  Google Scholar 

  3. Novick, P. & Botstein, D. Phenotypic analysis of temperature-sensitive yeast actin mutants. Cell 40, 405–416 (1985).

    Article  CAS  Google Scholar 

  4. Di Ciano, C. et al. Osmotic stress-induced remodeling of the cortical cytoskeleton. Am. J. Physiol. Cell Physiol. 283, C850–C865 (2002).

    Article  CAS  Google Scholar 

  5. Chowdhury, S., Smith, K.W. & Gustin, M.C. Osmotic stress and the yeast cytoskeleton: phenotype-specific suppression of an actin mutation. J. Cell Biol. 118, 561–571 (1992).

    Article  CAS  Google Scholar 

  6. Sheikh-Hamad, D. et al. p38 kinase activity is essential for osmotic induction of mRNAs for HSP70 and transporter for organic solute betaine in Madin-Darby canine kidney cells. J. Biol. Chem. 273, 1832–1837 (1998).

    Article  CAS  Google Scholar 

  7. Garmyn, M. et al. Human keratinocytes respond to osmotic stress by p38 map kinase regulated induction of HSP70 and HSP27. J. Invest. Dermatol. 117, 1290–1295 (2001).

    Article  CAS  Google Scholar 

  8. Landry, J. & Huot, J. Regulation of actin dynamics by stress-activated protein kinase 2 (SAPK2)-dependent phosphorylation of heat-shock protein of 27 kDa (Hsp27). Biochem. Soc. Symp. 64, 79–89 (1999).

    CAS  PubMed  Google Scholar 

  9. Ito, H., Okamoto, K., Nakayama, H., Isobe, T. & Kato, K. Phosphorylation of αB-crystallin in response to various types of stress. J. Biol. Chem. 272, 29934–29941 (1997).

    Article  CAS  Google Scholar 

  10. Gustin, M.C., Albertyn, J., Alexander, M. & Davenport, K. MAP kinase pathways in the yeast Sacchoromyces cerevisiae. Microbiol. Mol. Biol. Rev. 62, 1264–1300 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Widmann, C., Gibson, S., Jarpe, M.B. & Johnson, G.L. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol. Rev. 79, 143–180 (1999).

    Article  CAS  Google Scholar 

  12. Clemens, J.C. et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl Acad. Sci. USA 97, 6499–6503 (2000).

    Article  CAS  Google Scholar 

  13. Chao, T.H., Hayashi, M., Tapping, R.I., Kato, Y. & Lee, J.D. MEKK3 directly regulates MEK5 activity as part of the big mitogen-activated protein kinase 1 (BMK1) signaling pathway. J. Biol. Chem. 274, 36035–36038 (1999).

    Article  CAS  Google Scholar 

  14. Sun, W. et al. MEKK2 associates with the adapter protein Lad/RIBP and regulates the MEK5–BMK1/ERK5 pathway. J. Biol. Chem. 276, 5093–5100 (2001).

    Article  CAS  Google Scholar 

  15. Posas, F. & Saito, H. Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK. Science 276, 1702–1705 (1997).

    Article  CAS  Google Scholar 

  16. Posas, F., Witten, E.A. & Saito, H. Requirement of STE50 for osmostress-induced activation of the STE11 mitogen-activated protein kinase kinase kinase in the high-osmolarity glycerol response pathway. Mol. Cell. Biol. 18, 5788–5796 (1998).

    Article  CAS  Google Scholar 

  17. Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).

    Article  CAS  Google Scholar 

  18. Oliveria, S.F., Gomez, L.L. & Dell'Acqua, M.L. Imaging kinase — AKAP79 —phosphatase scaffold complexes at the plasma membrane in living cells using FRET microscopy. J. Cell Biol. 160, 101–112 (2003).

    Article  CAS  Google Scholar 

  19. Sorkin, A., McClure, M., Huang, F. & Carter, R. Interaction of EGF receptor and grb2 in living cells visualized by fluorescence resonance energy transfer (FRET) microscopy. Curr. Biol. 10, 1395–1398 (2000).

    Article  CAS  Google Scholar 

  20. Deacon, K. & Blank, J.L. Characterization of the mitogen-activated protein kinase kinase 4 (MKK4)/c-Jun NH2-terminal kinase 1 and MKK3/p38 pathways regulated by MEK kinases 2 and 3. MEK kinase 3 activates MKK3 but does not cause activation of p38 kinase in vivo. J. Biol. Chem. 272, 14489–14496 (1997).

    Article  CAS  Google Scholar 

  21. Reiser, V., Salah, S.M. & Ammerer, G. Polarized localization of yeast Pbs2 depends on osmostress, the membrane protein Sho1 and Cdc42. Nature Cell Biol. 2, 620–627 (2000).

    Article  CAS  Google Scholar 

  22. Allen, W.E., Jones, G.E., Pollard, J.W. & Ridley, A.J. Rho, Rac and Cdc42 regulate actin organization and cell adhesion in macrophages. J. Cell Sci. 110, 707–720 (1997).

    CAS  PubMed  Google Scholar 

  23. Abell, A.N. et al. Rac2D57N, a dominant inhibitory Rac2 mutant that inhibits p38 kinase signaling and prevents surface ruffling in bone-marrow-derived macrophages. J. Cell Sci. (in Press).

  24. Fanger, G.R., Johnson, N.L. & Johnson, G.L. MEK kinases are regulated by EGF and selectively interact with Rac/Cdc42. EMBO J. 16, 4961–4972 (1997).

    Article  CAS  Google Scholar 

  25. Deacon, K. & Blank, J.L. MEK kinase 3 directly activates MKK6 and MKK7, specific activators of the p38 and c-Jun NH2-terminal kinases. J. Biol. Chem. 274, 16604–16610 (1999).

    Article  CAS  Google Scholar 

  26. Riches, D.W. & Underwood, G.A. Expression of interferon-β during the triggering phase of macrophage cytocidal activation. Evidence for an autocrine/paracrine role in the regulation of this state. J. Biol. Chem. 266, 24785–24792 (1991).

    CAS  PubMed  Google Scholar 

  27. Bartel, P., Chien, C.T., Sternglanz, R. & Fields, S. Elimination of false positives that arise in using the two-hybrid system. Biotechniques 14, 920–924 (1993).

    CAS  PubMed  Google Scholar 

  28. Hollenberg, S.M., Sternglanz, R., Cheng, P.F. & Weintraub, H. Identification of a new family of tissue-specific basic helix-loop-helix proteins with a two-hybrid system. Mol. Cell. Biol. 15, 3813–3822 (1995).

    Article  CAS  Google Scholar 

  29. Gerwins, P., Blank, J.L. & Johnson, G.L. Cloning of a novel mitogen-activated protein kinase kinase kinase, MEKK4, that selectively regulates the c-Jun amino terminal kinase pathway. J. Biol. Chem. 272, 8288–8295 (1997).

    Article  CAS  Google Scholar 

  30. Garrington, T.P. et al. MEKK2 gene disruption causes loss of cytokine production in response to IgE and c-Kit ligand stimulation of ES cell-derived mast cells. EMBO J 19, 5387–5395 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Sorkin and M.Churchill for helpful discussions. The work was supported by grants from the National Insitiute of Health (GM30324, DK68820 and DK37871) to G.L.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary L. Johnson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information, Fig. S1

Supplementary Information, Fig. S2 (PDF 2141 kb)

Supplementary Information, Fig. S3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uhlik, M., Abell, A., Johnson, N. et al. Rac–MEKK3–MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock. Nat Cell Biol 5, 1104–1110 (2003). https://doi.org/10.1038/ncb1071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1071

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing