Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Scaffold-mediated symmetry breaking by Cdc42p

Abstract

Cell polarization generally occurs along a single well-defined axis that is frequently determined by environmental cues such as chemoattractant gradients or cell–cell contacts, but polarization can also occur spontaneously in the apparent absence of such cues, through a process called symmetry breaking1,2,3,4,5. In Saccharomyces cerevisiae, cells are born with positional landmarks that mark the poles of the cell and guide subsequent polarization and bud emergence to those sites, but cells lacking such landmarks polarize towards a random cortical site and proliferate normally6. The landmarks employ a Ras-family GTPase, Rsr1p7,8,9, to communicate with the conserved Rho-family GTPase Cdc42p, which is itself polarized and essential for cytoskeletal polarization10,11. We found that yeast Cdc42p was effectively polarized to a single random cortical site even in the combined absence of landmarks, microtubules and microfilaments. Among a panel of Cdc42p effectors and interacting proteins, we found that the scaffold protein Bem1p was uniquely required for this symmetry-breaking behaviour. Moreover, polarization was dependent on GTP hydrolysis by Cdc42p, suggesting that assembly of a polarization site involves cycling of Cdc42p between GTP- and GDP-bound forms, rather than functioning as a simple on/off switch.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Landmark-independent Cdc42p polarization does not require polymerized actin or tubulin.
Figure 2: Landmark-independent Cdc42p polarization requires Bem1p.
Figure 3: Cdc42p function requires GTP hydrolysis.
Figure 4: Spontaneous Cdc42pQ61L polarization only occurs after overexpression to toxic levels.
Figure 5: Cdc42p function in symmetry breaking and polarity establishment.

Similar content being viewed by others

References

  1. Gerhart, J. et al. Cortical rotation of the Xenopus egg: consequences for the anteroposterior pattern of embryonic dorsal development. Development 107, 37–51 (1989).

    PubMed  Google Scholar 

  2. Verkhovsky, A.B., Svitkina, T.M. & Borisy, G.G. Self-polarization and directional motility of cytoplasm. Curr. Biol. 9, 11–20 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. van Oudenaarden, A. & Theriot, J.A. Cooperative symmetry-breaking by actin polymerization in a model for cell motility. Nature Cell Biol. 1, 493–499 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Kirschner, M., Gerhart, J. & Mitchison, T. Molecular “vitalism”. Cell 100, 79–88 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Wedlich-Soldner, R. & Li, R. Spontaneous cell polarization: undermining determinism. Nature Cell Biol. 5, 267–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Chant, J. Cell polarity in yeast. Annu. Rev. Cell Dev. Biol 15, 365–391 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Bender, A. & Pringle, J.R. Multicopy suppression of the cdc24 budding defect in yeast by CDC42 and three newly identified genes including the ras-related gene RSR1. Proc. Natl. Acad. Sci. U. S. A. 86, 9976–9980 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ruggieri, R. et al. RSR1, a ras-like gene homologous to Krev-1 (smg21A/rap1A): role in the development of cell polarity and interactions with the Ras pathway in Saccharomyces cerevisiae. Mol. Cell Biol. 12, 758–766 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chant, J. & Herskowitz, I. Genetic control of bud site selection in yeast by a set of gene products that constitute a morphogenetic pathway. Cell 65, 1203–1212 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–35 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Pringle, J.R. et al. Establishment of cell polarity in yeast. Cold Spring Harbor Symp. Quant. Biol. 60, 729–744 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Padmashree, C.G. & Surana, U. Cdc28–Clb mitotic kinase negatively regulates bud site assembly in the budding yeast. J. Cell Sci. 114, 207–218 (2001).

    CAS  PubMed  Google Scholar 

  13. Gulli, M.P. et al. Phosphorylation of the Cdc42 exchange factor Cdc24 by the PAK-like kinase Cla4 may regulate polarized growth in yeast. Mol. Cell 6, 1155–1167 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Wedlich-Soldner, R., Altschuler, S., Wu, L. & Li, R. Spontaneous cell polarization through actomyosin-based delivery of the Cdc42 GTPase. Science 299, 1231–1235 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Michelitch, M. & Chant, J. A mechanism of Bud1p GTPase action suggested by mutational analysis and immunolocalization. Curr. Biol. 6, 446–454 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Harkins, H.A. et al. Bud8p and Bud9p, proteins that may mark the sites for bipolar budding in yeast. Mol. Biol. Cell 12, 2497–2518 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bender, A. Genetic evidence for the roles of the bud-site-selection genes BUD5 and BUD2 in control of the Rsr1p (Bud1p) GTPase in yeast. Proc. Natl Acad. Sci. USA 90, 9926–9929 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chant, J., Corrado, K., Pringle, J.R. & Herskowitz, I. Yeast BUD5, encoding a putative GDP–GTP exchange factor, is necessary for bud site selection and interacts with bud formation gene BEM1. Cell 65, 1213–1224 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Park, H.O., Chant, J. & Herskowitz, I. BUD2 encodes a GTPase-activating protein for Bud1/Rsr1 necessary for proper bud-site selection in yeast. Nature 365, 269–274 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Adams, A.E.M., Johnson, D.I., Longnecker, R.M., Sloat, B.F. & Pringle, J.R. CDC42 and CDC43, two additional genes involved in budding and the establishment of cell polarity in the yeast Saccharomyces cerevisiae. J. Cell Biol. 111, 131–142 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Bender, A. & Pringle, J.R. Use of a screen for synthetic lethal and multicopy suppressee mutants to identify two new genes involved in morphogenesis in Saccharomyces cerevisiae. Mol. Cell Biol. 11, 1295–1305 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chenevert, J., Corrado, K., Bender, A., Pringle, J. & Herskowitz, I. A yeast gene (BEM1) necessary for cell polarization whose product contains two SH3 domains. Nature 356, 77–79 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Peterson, J. et al. Interactions between the bud emergence proteins Bem1p and Bem2p and Rho-type GTPases in yeast. J. Cell Biol. 127, 1395–1406 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Zheng, Y., Bender, A. & Cerione, R.A. Interactions among proteins involved in bud-site selection and bud-site assembly in Saccharomyces cerevisiae. J. Biol. Chem. 270, 626–630 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Bose, I. et al. Assembly of scaffold-mediated complexes containing Cdc42p, the exchange factor Cdc24p, and the effector Cla4p required for cell cycle-regulated phosphorylation of Cdc24p. J. Biol. Chem. 276, 7176–7186 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Leeuw, T. et al. Pheromone response in yeast: association of Bem1p with proteins of the MAP kinase cascade and actin. Science 270, 1210–1213 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Lyons, D.M., Mahanty, S.K., Choi, K.Y., Manandhar, M. & Elion, E.A. The SH3-domain protein Bem1 coordinates mitogen-activated protein kinase cascade activation with cell cycle control in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 4095–4106 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Matsui, Y., Matsui, R., Akada, R. & Toh-e, A. Yeast src homology region 3 domain-binding proteins involved in bud formation. J. Cell Biol. 133, 865–878 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Park, H.O., Bi, E., Pringle, J.R. & Herskowitz, I. Two active states of the Ras-related Bud1/Rsr1 protein bind to different effectors to determine yeast cell polarity. Proc. Natl Acad. Sci. USA 94, 4463–4468 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ito, T., Matsui, Y., Ago, T., Ota, K. & Sumimoto, H. Novel modular domain PB1 recognizes PC motif to mediate functional protein–protein interactions. EMBO J. 20, 3938–3946 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Butty, A.C. et al. A positive feedback loop stabilizes the guanine-nucleotide exchange factor Cdc24 at sites of polarization. EMBO J. 21, 1565–1576 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bender, L. et al. Associations among PH and SH3 domain-containing proteins and Rho-type GTPases in yeast. J. Cell Biol. 133, 879–894 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Ellson, C.D., Andrews, S., Stephens, L.R. & Hawkins, P.T. The PX domain: a new phosphoinositide-binding module. J. Cell Sci. 115, 1099–1105 (2002).

    CAS  PubMed  Google Scholar 

  34. Yu, J.W. & Lemmon, M.A. All phox homology (PX) domains from Saccharomyces cerevisiae specifically recognize phosphatidylinositol 3-phosphate. J. Biol. Chem. 276, 44179–44184 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Ago, T. et al. The PX domain as a novel phosphoinositide-binding module. Biochem. Biophys. Res. Commun. 287, 733–738 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Endo, M., Shirouzu, M. & Yokoyama, S. The Cdc42 binding and scaffolding activities of the fission yeast adaptor protein Scd2. J. Biol. Chem. 278, 843–852 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Ayscough, K.R. et al. High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. J. Cell Biol. 137, 399–416 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gladfelter, A.S., Bose, I., Zyla, T.R., Bardes, E.S. & Lew, D.J. Septin ring assembly involves cycles of GTP loading and hydrolysis by Cdc42p. J. Cell Biol. 156, 315–326 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lin, R., Bagrodia, S., Cerione, R. & Manor, D. A novel Cdc42Hs mutant induces cellular transformation. Curr. Biol. 7, 794–797 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Ziman, M., O'Brien, J.M., Ouellette, L.A., Church, W.R. & Johnson, D.I. Mutational analysis of CDC42Sc, a Saccharomyces cerevisiae gene that encodes a putative GTP-binding protein involved in the control of cell polarity. Mol. Cell. Biol. 11, 3537–3544 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gladfelter, A.S., Moskow, J.J., Zyla, T.R. & Lew, D.J. Isolation and characterization of effector-loop mutants of CDC42 in yeast. Mol. Biol. Cell 12, 1239–1255 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Miller, P.J. & Johnson, D.I. Characterization of the Saccharomyces cerevisiae cdc42-1ts allele and new temperature-conditional-lethal cdc42 alleles. Yeast 13, 561–572 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Kozminski, K.G., Chen, A.J., Rodal, A.A. & Drubin, D.G. Functions and functional domains of the GTPase Cdc42p. Mol. Biol. Cell 11, 339–354 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lechler, T., Jonsdottir, G.A., Klee, S.K., Pellman, D. & Li, R. A two-tiered mechanism by which Cdc42 controls the localization and activation of an Arp2/3-activating motor complex in yeast. J. Cell Biol. 155, 261–270 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Caviston, J.P., Tcheperegine, S.E. & Bi, E. Singularity in budding: a role for the evolutionarily conserved small GTPase Cdc42p. Proc. Natl Acad. Sci. USA 99, 12185–12190 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Thompson, R.C. EFTu provides an internal kinetic standard for translational accuracy. Trends Biochem. Sci. 13, 91–93 (1988).

    Article  CAS  PubMed  Google Scholar 

  47. Pruyne, D. & Bretscher, A. Polarization of cell growth in yeast. I. Establishment and maintenance of polarity states. J. Cell Sci. 113, 365–375 (2000).

    CAS  PubMed  Google Scholar 

  48. Johnson, D.I. Cdc42: An essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiol. Mol. Biol. Rev. 63, 54–105 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ausubel, F.M. et al. Current Protocols in Molecular Biology (John Wiley and Sons, New York, 1995).

    Google Scholar 

  50. Guthrie, C. et al. Guide to yeast genetics and molecular biology. Vol. 194 (Academic Press, San Diego, CA, 1991).

    Google Scholar 

  51. McMillan, J.N., Theesfeld, C.L., Harrison, J.C., Bardes, E.S. & Lew, D.J. Determinants of Swe1p degradation in Saccharomyces cerevisiae. Mol. Biol. Cell 13, 3560–3575 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pringle, J.R., Adams, A.E.M., Drubin, D.G. & Haarer, B.K. Immunofluorescence methods for yeast. Methods Enzymol. 194, 565–602 (1991).

    Article  CAS  PubMed  Google Scholar 

  53. Bi, E. et al. Involvement of an actomyosin contractile ring in Saccharomyces cerevisiae cytokinesis. J. Cell Biol. 142, 1301–1312 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lehman, K., Rossi, G., Adamo, J.E. & Brennwald, P. Yeast homologues of tomosyn and lethal giant larvae function in exocytosis and are associated with the plasma membrane SNARE, Sec9. J. Cell Biol. 146, 125–140 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Redding, K., Holcomb, C. & Fuller, R.S. Immunolocalization of Kex2 protease identifies a putative late Golgi compartment in the yeast Saccharomyces cerevisiae. J. Cell Biol. 113, 527–538 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Y. Matsui and T. Ito for the generous gift of plasmids, P. Brennwald for the generous gift of affinity-purified anti-Cdc42p and anti-Bem1p antibodies, and L. Schenkman and J. Pringle for the generous gift of strains and primers. We also wish to thank S. Kornbluth, D. Kiehart and S. Haase for critical reading of the manuscript, S. Margolis and D. Colón-Ramos, and members of the Pringle and Lew labs for stimulating discussions. This work was supported by a grant GM62300 from the National Institutes of Health/National Institute of General Medical Sciences to D.J.L. J.E.I. was supported by a Predoctoral Fellowship DAMD17-01-1-0231 from the Department of Defense Breast Cancer Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Lew.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irazoqui, J., Gladfelter, A. & Lew, D. Scaffold-mediated symmetry breaking by Cdc42p. Nat Cell Biol 5, 1062–1070 (2003). https://doi.org/10.1038/ncb1068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1068

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing