Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis

An Erratum to this article was published on 01 January 2004


Mitochondrial cytochrome c release and inositol (1,4,5) trisphosphate receptor (InsP3R)-mediated calcium release from the endoplasmic reticulum mediate apoptosis in response to specific stimuli. Here we show that cytochrome c binds to the InsP3R during apoptosis. Addition of 1 nM cytochrome c blocks calcium-dependent inhibition of InsP3R function. Early in apoptosis, cytochrome c translocates to the endoplasmic reticulum where it selectively binds InsP3R, resulting in sustained, oscillatory cytosolic calcium increases. These calcium events are linked to the coordinate release of cytochrome c from all mitochondria. Our findings identify a feed-forward mechanism whereby early cytochrome c release increases InsP3R function, resulting in augmented cytochrome c release that amplifies the apoptotic signal.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Cytochrome c interacts with InsP3R.
Figure 2: Cytochrome c translocates to the endoplasmic-reticulum-binding InsP3R during apoptosis in HeLa cells.
Figure 3: Cytochrome c translocates to the endoplasmic-reticulum-binding InsP3R during apoptosis in PC12 cells.
Figure 4: Translocation of cytochrome c to the endoplasmic reticulum is upstream of caspase activation.
Figure 5: Cytochrome c translocation to endoplasmic reticulum is blocked in the absence of InsP3R.
Figure 6: Cytochrome c–InsP3R interaction during apoptosis demonstrated by FRET.
Figure 7: Changes in cytosolic calcium coincide with the coordinate release of cytochrome c from mitochondria.
Figure 8: Cytochrome c binding to InsP3R is required for STS-induced calcium oscillations and coordinate release of cytochrome c.


  1. Berridge, M.J., Lipp, P. & Bootman, M.D. The versatility and universality of calcium signalling. Nature Rev. Mol. Cell Biol. 1, 11–21 (2000).

    CAS  Google Scholar 

  2. Orrenius, S., Zhivotovsky, B. & Nicotera, P. Regulation of cell death: the calcium-apoptosis link. Nature Rev. Mol. Cell Biol. 4, 552–565 (2003).

    CAS  Article  Google Scholar 

  3. Ferrari, D. et al. Endoplasmic reticulum, Bcl-2 and Ca(2+) handling in apoptosis. Cell Calcium 32, 413–420 (2002).

    CAS  Article  Google Scholar 

  4. Hajnoczky, G., Csordas, G., Madesh, M. & Pacher, P. Control of apoptosis by IP(3) and ryanodine receptor driven calcium signals. Cell Calcium 28, 349–363 (2000).

    CAS  Article  Google Scholar 

  5. Strasser, A., O'Connor, L. & Dixit, V.M. Apoptosis signaling. Annu. Rev. Biochem. 69, 217–245 (2000).

    CAS  Article  Google Scholar 

  6. Goldstein, J.C., Waterhouse, N.J., Juin, P., Evan, G.I. & Green, D.R. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nature Cell Biol. 2, 156–162 (2000).

    CAS  Article  Google Scholar 

  7. Rizzuto, R. et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280, 1763–1766 (1998).

    CAS  Article  Google Scholar 

  8. Csordas, G., Thomas, A.P. & Hajnoczky, G. Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J. 18, 96–108 (1999).

    CAS  Article  Google Scholar 

  9. Bezprozvanny, I., Watras, J. & Ehrlich, B.E. Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351, 751–754 (1991).

    CAS  Article  Google Scholar 

  10. Finch, E.A., Turner, T.J. & Goldin, S.M. Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. Science 252, 443–446 (1991).

    CAS  Article  Google Scholar 

  11. Boehning, D. & Joseph, S.K. Functional properties of recombinant type I and type III inositol 1, 4,5-trisphosphate receptor isoforms expressed in COS-7 cells. J. Biol. Chem. 275, 21492–21499 (2000).

    CAS  Article  Google Scholar 

  12. Tenhunen, R., Marver, H.S. & Schmid, R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc. Natl Acad. Sci. USA 61, 748–755 (1968).

    CAS  Article  Google Scholar 

  13. Wojcikiewicz, R.J. Type I, II, and III inositol 1,4,5-trisphosphate receptors are unequally susceptible to down-regulation and are expressed in markedly different proportions in different cell types. J. Biol. Chem. 270, 11678–11683 (1995).

    CAS  Article  Google Scholar 

  14. Diaz, F. & Bourguignon, L.Y. Selective down-regulation of IP(3)receptor subtypes by caspases and calpain during TNFα-induced apoptosis of human T-lymphoma cells. Cell Calcium 27, 315–328 (2000).

    CAS  Article  Google Scholar 

  15. Hirota, J., Furuichi, T. & Mikoshiba, K. Inositol 1,4,5-trisphosphate receptor type 1 is a substrate for caspase-3 and is cleaved during apoptosis in a caspase-3-dependent manner. J. Biol. Chem. 274, 34433–34437 (1999).

    CAS  Article  Google Scholar 

  16. Sugawara, H., Kurosaki, M., Takata, M. & Kurosaki, T. Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor. EMBO J. 16, 3078–3088 (1997).

    CAS  Article  Google Scholar 

  17. Ikonen, E., Fiedler, K., Parton, R.G. & Simons, K. Prohibitin, an antiproliferative protein, is localized to mitochondria. FEBS Lett. 358, 273–277 (1995).

    CAS  Article  Google Scholar 

  18. Selvin, P.R. Fluorescence resonance energy transfer. Methods Enzymol. 246, 300–334 (1995).

    CAS  Article  Google Scholar 

  19. Mochizuki, N. et al. Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature 411, 1065–1068 (2001).

    CAS  Article  Google Scholar 

  20. Sorkin, A., McClure, M., Huang, F. & Carter, R. Interaction of EGF receptor and grb2 in living cells visualized by fluorescence resonance energy transfer (FRET) microscopy. Curr. Biol. 10, 1395–1398 (2000).

    CAS  Article  Google Scholar 

  21. Hausmann, G. et al. Pro-apoptotic apoptosis protease-activating factor 1 (Apaf-1) has a cytoplasmic localization distinct from Bcl-2 or Bcl-x(L). J. Cell Biol. 149, 623–634 (2000).

    CAS  Article  Google Scholar 

  22. Okazaki, M., Ishibashi, Y., Asoh, S. & Ohta, S. Overexpressed mitochondrial hinge protein, a cytochrome c-binding protein, accelerates apoptosis by enhancing the release of cytochrome c from mitochondria. Biochem. Biophys. Res. Commun. 243, 131–136 (1998).

    CAS  Article  Google Scholar 

  23. Jayaraman, T. & Marks, A.R. T cells deficient in inositol 1,4,5-trisphosphate receptor are resistant to apoptosis. Mol. Cell Biol. 17, 3005–3012 (1997).

    CAS  Article  Google Scholar 

  24. Blackshaw, S. et al. Type 3 inositol 1,4,5-trisphosphate receptor modulates cell death. FASEB J. 14, 1375–1379 (2000).

    CAS  Article  Google Scholar 

  25. Khan, A.A. et al. Lymphocyte apoptosis: mediation by increased type 3 inositol 1,4,5-trisphosphate receptor. Science 273, 503–507 (1996).

    CAS  Article  Google Scholar 

  26. Marsden, V.S. et al. Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature 419, 634–637 (2002).

    CAS  Article  Google Scholar 

  27. Lassus, P., Opitz-Araya, X. & Lazebnik, Y. Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297, 1352–1354 (2002).

    CAS  Article  Google Scholar 

  28. Boehning, D. & Joseph, S.K. Direct association of ligand-binding and pore domains in homo- and heterotetrameric inositol 1,4,5-trisphosphate receptors. EMBO J. 19, 5450–5459 (2000).

    CAS  Article  Google Scholar 

  29. Joseph, S.K. & Samanta, S. Detergent solubility of the inositol trisphosphate receptor in rat brain membranes. Evidence for association of the receptor with ankyrin.PG. J. Biol. Chem. 268, 6477–6486 (1993).

    CAS  PubMed  Google Scholar 

  30. Dore, S. et al. Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury. Proc. Natl Acad. Sci. USA 96, 2445–2450 (1999).

    CAS  Article  Google Scholar 

  31. Ferris, C.D., Cameron, A.M., Huganir, R.L. & Snyder, S.H. Quantal calcium release by purified reconstituted inositol 1,4,5- trisphosphate receptors. Nature 356, 350–352 (1992).

    CAS  Article  Google Scholar 

  32. Venkatachalam, K., Ma, H.T., Ford, D.L. & Gill, D.L. Expression of functional receptor-coupled TRPC3 channels in DT40 triple receptor InsP3 knockout cells. J. Biol. Chem. 276, 33980–33985 (2001).

    CAS  Article  Google Scholar 

Download references


The authors thank D.B. Murphy for valuable comments and FRET instrumentation. We also thank S.K. Joseph for an initial supply of anti-InsP3R-I antibody and InsP3R expression constructs. We appreciate the support and useful discussion of D. Van Rossum, R.E. Rothe and P. Stankovic. This work was supported by USPHS grants MH-18501 and DA-000266 and Research Scientist Award DA-00074 (SHS), and National Research Service Awards NS-043850 (D.B.) and NH65090 (R.L.P.).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Solomon H. Snyder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information, Fig. S1

Supplementary Information, Fig. S2 (PDF 82 kb)

Supplementary Information, Fig. S3

Supplementary Information, Fig. S4

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Boehning, D., Patterson, R., Sedaghat, L. et al. Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol 5, 1051–1061 (2003).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing