Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Targeting of protein ubiquitination by BTB–Cullin 3–Roc1 ubiquitin ligases

Abstract

The concentrations and functions of many cellular proteins are regulated by the ubiquitin pathway. Cullin family proteins bind with the RING-finger protein Roc1 to recruit the ubiquitin-conjugating enzyme (E2) to the ubiquitin ligase complex (E3). Cul1 and Cul7, but not other cullins, bind to an adaptor protein, Skp1. Cul1 associates with one of many F-box proteins through Skp1 to assemble various SCF–Roc1 E3 ligases that each selectively ubiquitinate one or more specific substrates. Here, we show that Cul3, but not other cullins, binds directly to multiple BTB domains through a conserved amino-terminal domain. In vitro, Cul3 promoted ubiquitination of Caenorhabditis elegans MEI-1, a katanin-like protein whose degradation requires the function of both Cul3 and BTB protein MEL-26. We suggest that in vivo there exists a potentially large number of BCR3 (BTB–Cul3–Roc1) E3 ubiquitin ligases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Purification of CUL3 complexes.
Figure 2: BTB domain of KIAA1309 binds to an N-terminal sequence of Cul3.
Figure 3: Cul3 binds to multiple BTB domains.
Figure 4: Cul3 binds to MEL-26 and MEI-1.
Figure 5: MEL26-Cul3–Roc1 promotes MEI-1 ubiquitination in vitro.

Similar content being viewed by others

References

  1. Hochstrasser, M. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30, 405–439 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. King, R.W., Deshaies, R.J., Peters, J.-M. & Kirschner, M.W. How proteolysis drives the cell cycle. Science 274, 1652–1659 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–79 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Zachariae, W. & Nasmyth, K. Whose end is destruction: cell division and the anaphase-promoting complex. Genes Dev. 13, 2039–2058 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Deshaies, R.J. SCF and cullin/RING H2-based ubiquitin ligases. Annu. Rev. Cell Dev.Biol. 15, 435–467 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Pickart, C.M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Zheng, N. et al. Structure of the Cul1–Rbx1–Skp1–F box Skp2 SCF ubiquitin ligase complex. Nature 416, 703–709 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Bai, C. et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86, 263–274 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Skowyra, D., Craig, K., Tyers, M., Elledge, S.J. & Harper, J.W. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin–ligase complex. Cell 91, 209–219 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Feldman, R.M.R., Correll, C.C., Kaplan, K.B. & Deshaies, R.J. A complex of Cdc4p, Skp1p, and Cdc53p/Cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91, 221–230 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Kipreos, E.T., Lander, L.E., Wing, J.P., He, W.-W. & Hedgecock, E.M. cul-1 is required for cell cycle exit in C. elegans and identifies a novel gene family. Cell 85, 829–839 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Pause, A. et al. The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc. Natl Acad. Sci. USA 94, 2156–2161 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lonergan, K.M. et al. Regulation o fhypoxia-inducible mRNAs by the von Hippel-Lindau tumor suppressor protein requires binding to complexes containing elongins B/C and Cul2. Mol. Cell Biol. 18, 732–741 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maxwell, P.H. et al. The tumor suppressor protein VHL targets hypoxia-inducible factor for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Lisztwan, J., Imbert, G., Wirbelauer, C., Gstaiger, M. & Krek, W. The von Hippel-Lindau tumor suppressor protein is a component of an E3 ubiquitin–protein ligase activity. Genes Dev. 13, 1822–1833 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ohh, M. et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel-Lindau protein. Nature Cell Biol. 2, 423–427 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Furukawa, M., Ohta, T. & Xiong, Y. Activation of UBC5 ubiquitin-conjugating enzyme by the RING finger of ROC1 and assembly of active ubiquitin ligases by all cullins. J. Biol. Chem. 277, 15758–15765 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Michel, J.J. & Xiong, Y. Human CUL-1, but not other cullin family members, selectively interacts with SKP1 to form a complex with SKP2 and cyclin A. Cell Growth Differ. 9, 435–449 (1998).

    CAS  PubMed  Google Scholar 

  19. Michel, J.J., McCarville, J.F. & Xiong, Y. A role for Saccharomyces cerevisiae CUL8 ubiquitin ligase in proper anaphase progression. J. Biol. Chem. 278, 22828–22837 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Dias, D.C., Dolios, G., Wang, R. & Pan, Z.Q. CUL7: A DOC domain-containing cullin selectively binds Skp1.Fbx29 to form an SCF-like complex. Proc. Natl Acad. Sci. USA 99, 16601–16606 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Godt, D., Couderc, J.L., Cramton, S.E. & Laski, F.A. Pattern formation in the limbs of Drosophila: bric a brac is expressed in both a gradient and a wave-like pattern and is required for specification and proper segmentation of the tarsus. Development 119, 799–812 (1993).

    CAS  PubMed  Google Scholar 

  22. Zollman, S., Godt, D., Prive, G.G., Couderc, J.L. & Laski, F.A. The BTB domain, found primarily in zinc finger proteins, defines an evolutionarily conserved family that includes several developmentally regulated genes in Drosophila. Proc. Natl Acad. Sci. USA 91, 10717–10721 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bardwell, V.J. & Treisman, R. The POZ domain: a conserved protein–protein interaction motif. Genes Dev. 8, 1664–1677 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Xue, F. & Cooley, L. kelch encodes a component of intercellular bridges in Drosophila egg chambers. Cell 72, 681–693 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Clark-Maguire, S. & Mains, P.E. Localization of the mei-1 gene product of Caenorhaditis elegans, a meiotic-specific spindle component. J. Cell Biol. 126, 199–209 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Srayko, M., Buster, D.W., Bazirgan, O.A., McNally, F.J. & Mains, P.E. MEI-1/MEI-2 katanin-like microtubule severing activity is required for Caenorhabditis elegans meiosis. Genes Dev. 14, 1072–1084 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kurz, T. et al. Cytoskeletal regulation by the nedd8 ubiquitin-like protein modification pathway. Science 295, 1294–1298 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Pintard, L. et al. Neddylation and deneddylation of CUL-3 is required to target MEI-1/Katanin for degradation at the meiosis-to-mitosis transition in C. elegans. Curr. Biol. 13, 911–921 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Collins, T., Stone, J.R. & Williams, A.J. All in the family: the BTB/POZ, KRAB, and SCAN domains. Mol. Cell. Biol. 21, 3609–3615 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ohta, T., Michel, J.J., Schottelius, A.J. & Xiong, Y. ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol. Cell 3, 535–541 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Furukawa, M., Yanping, Z., McCarville, J., Ohta, T. & Xiong, Y. The C-terminal sequence and ROC1 are required for efficient nuclear accumulation, NEDD8 modification, and ubiquitin ligase activity of CUL1. Mol. Cell. Biol. 20, 8185–8197 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Kazusa DNA Research Institute (Chiba, Japan) for providing KIAA EST clones, S. Ahmed for providing the C. elegans library, N. Zheng for providing Cul3 and Roc1 baculoviruses, and C. McCall, J. McCarville and other members of the Xiong lab for discussion throughout this work and critically reading the manuscript. Y. X. is supported in part by a US Department of Defense Career Development Award. This study is supported by a National Institutes of Health grant to Y.X.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Xiong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furukawa, M., He, Y., Borchers, C. et al. Targeting of protein ubiquitination by BTB–Cullin 3–Roc1 ubiquitin ligases. Nat Cell Biol 5, 1001–1007 (2003). https://doi.org/10.1038/ncb1056

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1056

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing