Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cdc42-dependent actin polymerization during compensatory endocytosis in Xenopus eggs

Abstract

The actin filament (F-actin) cytoskeleton associates dynamically with the plasma membrane and is thus ideally positioned to participate in endocytosis. Indeed, a wealth of genetic and biochemical evidence has confirmed that actin interacts with components of the endocytic machinery1, although its precise function in endocytosis remains unclear. Here, we use 4D microscopy to visualize the contribution of actin during compensatory endocytosis in Xenopus laevis eggs. We show that the actin cytoskeleton maintains exocytosing cortical granules as discrete invaginated compartments, such that when actin is disrupted, they collapse into the plasma membrane. Invaginated, exocytosing cortical granule compartments are directly retrieved from the plasma membrane by F-actin coats that assemble on their surface. These dynamic F-actin coats seem to drive closure of the exocytic fusion pores and ultimately compress the cortical granule compartments. Active Cdc42 and N-WASP are recruited to exocytosing cortical granule membranes before F-actin coat assembly and coats assemble by Cdc42-dependent, de novo actin polymerization. Thus, F-actin may power fusion pore resealing and function in two novel endocytic capacities: the maintenance of invaginated compartments and the processing of endosomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Large endosomes are surrounded by dynamic coats of F-actin.
Figure 2: F-actin coats close over and compress exocytosing cortical granule compartments.
Figure 3: Retrieval of cortical granule membranes is F-actin-dependent.
Figure 4: Actin coats assemble by de novo polymerization in association with active Cdc42 and N-WASP.

Similar content being viewed by others

References

  1. Welch, M.D. & Mullins, R.D. Cellular control of actin nucleation. Annu. Rev. Cell Dev. Biol. 18, 247–288 (2002).

    Article  CAS  Google Scholar 

  2. Geli, M.I. & Riezman, H. Endocytic internalization in yeast and animal cells: similar and different. J. Cell Sci. 111, 1031–1037 (1998).

    CAS  PubMed  Google Scholar 

  3. Kaksonen, M., Peng, H.B. & Rauvala, H. Association of cortactin with dynamic actin in lamellipodia and on endosomal vesicles. J. Cell Sci. 113, 4421–4426 (2000).

    CAS  PubMed  Google Scholar 

  4. Rozelle, A.L., et al. Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Curr. Biol. 10, 311–320 (2000).

    Article  CAS  Google Scholar 

  5. Schafer, D.A., D'Souza-Schorey, C. & Cooper, J.A. Actin assembly at membranes controlled by ARF6. Traffic. 1, 896–907 (2000).

    Article  Google Scholar 

  6. Taunton, J. et al. Actin-dependent propulsion of endosomes and lysosomes by recruitment of N-WASP. J. Cell Biol. 148, 519–530 (2000).

    Article  CAS  Google Scholar 

  7. Merrifield, C.J. et al. Annexin 2 has an essential role in actin-based macropinocytic rocketing. Curr. Biol. 11, 1136–1141 (2001).

    Article  CAS  Google Scholar 

  8. Lee, E. & De Camilli, P. Dynamin at actin tails. Proc. Natl Acad. Sci. USA 99, 161–166 (2002).

    Article  CAS  Google Scholar 

  9. Orth, J.D., Krueger, E.W., Cao, H. & McNiven, M.A. The large GTPase dynamin regulates actin comet formation and movement in living cells. Proc. Natl Acad. Sci. USA 99, 167–172 (2002).

    Article  CAS  Google Scholar 

  10. Gundelfinger, E., Kessels, M. & Qualmann, B. Temporal and spatial coordination of exocytosis and endocytosis. Nature Rev. Mol. Cell Biol. 4, 127–139 (2003).

    Article  CAS  Google Scholar 

  11. Merrifield, C.J., Feldman, M.E., Wan, L. & Almers, W. Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nature Cell Biol. 4, 691–698 (2002).

    Article  CAS  Google Scholar 

  12. Merrifield, C.J. et al. Endocytic vesicles move at the tips of actin tails in cultured mast cells. Nature Cell Biol. 1, 72–74 (1999).

    Article  CAS  Google Scholar 

  13. Bement, W.M., Benink, H., Mandato, C.A. & Swelstad, B.B. Evidence for direct membrane retrieval following cortical granule exocytosis in Xenopus oocytes and eggs. J. Exp. Zool. 286, 767–775 (2000).

    Article  CAS  Google Scholar 

  14. Whalley, T., Terasaki, M., Cho, M.S. & Vogel, S.S. Direct membrane retrieval into large vesicles after exocytosis in sea urchin eggs. J. Cell Biol. 131, 1183–1192 (1995).

    Article  CAS  Google Scholar 

  15. Fesce, R., Grohovaz, F., Valtorta, F. & Meldolesi, J. Neurotransmitter release: fusion or 'kiss-and-run'? Trends Cell Biol. 4, 1–4 (1994).

    Article  CAS  Google Scholar 

  16. Kline, D. & Nuccitelli, R. The wave of activation current in the Xenopus egg. Dev. Biol. 111, 471–487 (1985).

    Article  CAS  Google Scholar 

  17. Terasaki, M., Runft, L.L. & Hand, A.R. Changes in organization of the endoplasmic reticulum during Xenopus oocyte maturation and activation. Mol. Biol. Cell 12, 1103–1116 (2001).

    Article  CAS  Google Scholar 

  18. Cao, L.G. & Wang, Y.L. Mechanism of the formation of contractile ring in dividing cultured animal cells. I. Recruitment of preexisting actin filaments into the cleavage furrow. J. Cell Biol. 110, 1089–1095 (1990).

    Article  CAS  Google Scholar 

  19. Mandato, C.A. & Bement, W.M. Contraction and polymerization cooperate to assemble and close actomyosin rings around Xenopus oocyte wounds. J. Cell Biol. 154, 785–797 (2001).

    Article  CAS  Google Scholar 

  20. De La Cruz, E. & Pollard, T. Transient kinetic analysis of rhodamine phalloidin binding to actin filaments. Biochemistry 33, 14387–14392 (1994).

    Article  CAS  Google Scholar 

  21. Ma, L., Cantley, L.C., Janmey, P.A. & Kirschner, M.W. Corequirement of specific phosphoinositides and small GTP-binding protein Cdc42 in inducing actin assembly in Xenopus egg extracts. J. Cell Biol. 140, 1125–1136 (1998).

    Article  CAS  Google Scholar 

  22. Moreau, V., & Way, M. Cdc42 is required for membrane-dependent actin polymerization in vitro. FEBS Lett. 427, 353–356 (1998).

    Article  CAS  Google Scholar 

  23. Rohatgi, R., et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell. 97, 221–231 (1999).

    Article  CAS  Google Scholar 

  24. Li, Z., Aizenman, C.D. & Cline, H.T. Regulation of rho GTPases by crosstalk and neuronal activity in vivo. Neuron 33, 741–750 (2002).

    Article  CAS  Google Scholar 

  25. Higgs, H.N. & Pollard, T.D. Regulation of actin filament network formation through Arp2/3 complex: activation by a diverse array of proteins. Annu. Rev. Biochem. 70, 649–676 (2001).

    Article  CAS  Google Scholar 

  26. Kozma, R., Ahmed, S., Best, A. & Lim, L. The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol. Cell. Biol. 15, 1942–1952 (1995).

    Article  CAS  Google Scholar 

  27. Bernheim-Groswasser, A., Wiesner, S., Golsteyn, R., Carlier, M. & Sykes, C. The dynamics of actin-based motility depend on surface parameters. Nature 417, 308–311 (2002).

    Article  CAS  Google Scholar 

  28. Upadhyaya, A., Chabot, J.R., Andreeva, A., Samadani, A. & van Oudenaarden, A. Probing polymerization forces by using actin-propelled lipid vesicles. Proc. Natl Acad. Sci. USA 100, 4521–4526 (2003).

    Article  CAS  Google Scholar 

  29. Giardini, P.A., Fletcher, D.A. & Theriot, J.A. Compression forces generated by actin comet tails on lipid vesicles. Proc. Natl Acad. Sci. USA 100, 6493–6498 (2003).

    Article  CAS  Google Scholar 

  30. Becker, K.A. & Hart, N.H. Reorganization of filamentous actin and myosin-II in zebrafish eggs correlates temporally and spatially with cortical granule exocytosis. J. Cell Sci. 112, 97–110 (1999).

    CAS  PubMed  Google Scholar 

  31. Lee, E. & Knecht, D.A. Visualization of actin dynamics during macropinocytosis and exocytosis. Traffic 3, 186–192 (2002).

    Article  CAS  Google Scholar 

  32. Canman, J.C. & Bement, W.M. Microtubules suppress actomyosin-based cortical flow in Xenopus oocytes. J. Cell Sci. 110, 1907–1917 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Higgs for providing the original WASP GBD clone and P. Krieg for the backbone Xenopus expression plasmid pCS2+. This work was supported by grants from the National Institutes of Health to both W.B. and J.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Marie Sokac.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokac, A., Co, C., Taunton, J. et al. Cdc42-dependent actin polymerization during compensatory endocytosis in Xenopus eggs. Nat Cell Biol 5, 727–732 (2003). https://doi.org/10.1038/ncb1025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1025

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing