Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Centromere tension: a divisive issue

It has been proposed that the spindle assembly checkpoint detects both unattached kinetochores and lack of tension between sister kinetochores when sister chromatids are not attached to opposite spindle poles. However, here we argue that there is only one signal — whether kinetochores are attached to microtubules or not — and this has implications for our understanding of both chromosome segregation and the control of genomic stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classic experiments that revealed the link between tension, stability of attachment and control of mitotic progression.
Figure 2: Potential mechanisms of intrakinetochore deformations.

References

  1. Thompson, S. L., Bakhoum, S. F. & Compton, D. A. Mechanisms of chromosomal instability. Curr. Biol. 20, R285–R295 (2010).

    Article  CAS  Google Scholar 

  2. Zirkle, R. E. UV-microbeam irradiation of newt-cell cytoplasm: spindle destruction, false anaphase and delay of true anaphase. Radiat. Res. 41, 516–537 (1970).

    Article  CAS  Google Scholar 

  3. Rieder, C. L., Cole, R. W., Khodjakov, A. & Sluder, G. The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J. Cell Biol. 130, 941–948 (1995).

    Article  CAS  Google Scholar 

  4. O'Connell, C. B. et al. The spindle assembly checkpoint is satisfied in the absence of interkinetochore tension during mitosis with unreplicated genomes. J. Cell Biol. 183, 29–36 (2008).

    Article  CAS  Google Scholar 

  5. Stern, B. M. & Murray, A. W. Lack of tension at kinetochores activates the spindle checkpoint in budding yeast. Curr. Biol. 11, 1462–1467 (2001).

    Article  CAS  Google Scholar 

  6. Biggins, S. & Murray, A. W. The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint. Genes Dev. 15, 3118–3129 (2001).

    Article  CAS  Google Scholar 

  7. Li, X. & Nicklas, R. B. Mitotic forces control a cell-cycle checkpoint. Nature 373, 630–632 (1995).

    Article  CAS  Google Scholar 

  8. Nicklas, R. B. How cells get the right chromosomes. Science 275, 632–637 (1997).

    Article  CAS  Google Scholar 

  9. Rieder, C. L., Schultz, A., Cole, R. & Sluder, G. Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J. Cell Biol. 127, 1301–1310 (1994).

    Article  CAS  Google Scholar 

  10. McEwen, B. F., Heagle, A. B., Cassels, G. O., Buttle, K. F. & Rieder, C. L. Kinetochore fiber maturation in PtK1 cells and its implications for the mechanisms of chromosome congression and anaphase onset. J. Cell Biol. 137, 1567–1580 (1997).

    Article  CAS  Google Scholar 

  11. Nicklas, R. B., Waters, J. C., Salmon, E. D. & Ward, S. C. Checkpoint signals in grasshopper meiosis are sensitive to microtubule attachment, but tension is still essential. J. Cell Sci. 114, 4173–4183 (2001).

    CAS  PubMed  Google Scholar 

  12. Nezi, L. & Musacchio, A. Sister chromatid tension and the spindle assembly checkpoint. Curr. Opin. in Cell Biol. 21, 785–795 (2009).

    Article  CAS  Google Scholar 

  13. Liu, D. & Lampson, M. A. Regulation of kinetochore-microtubule attachments by Aurora-B kinase. Biochem. Soc. Trans. 37, 976–980 (2009).

    Article  CAS  Google Scholar 

  14. Liu, D., Vader, G., Vromans, M. J., Lampson, M. A. & Lens, S. M. Sensing chromosome bi-orientation by spatial separation of Aurora-B kinase from kinetochore substrates. Science 323, 1350–1353 (2009).

    Article  CAS  Google Scholar 

  15. Liu, D. et al. Regulated targeting of protein phosphatase 1 to the outer kinetochore by KNL1 opposes Aurora-B kinase. J. Cell Biol. 188, 809–820 (2010).

    Article  CAS  Google Scholar 

  16. Nicklas, R. B. & Ward, S. C. Elements of error correction in mitosis: microtubule capture, release and tension. J. Cell Biol. 126, 1241–1253 (1994).

    Article  CAS  Google Scholar 

  17. Lampson, M. A., Renduchitala, K., Khodjakov, A. & Kapoor, T. M. Correcting improper chromosome–spindle attachments during cell division. Nat. Cell Biol. 6, 232–237 (2004).

    Article  CAS  Google Scholar 

  18. Cimini, D. et al. Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells. J. Cell Biol. 153, 517–528 (2001).

    Article  CAS  Google Scholar 

  19. Ganem, N. J., Godinho, S. A. & Pellman, D. A mechanism linking extra centrosomes to chromosomal instability. Nature 460, 278–282 (2009).

    Article  CAS  Google Scholar 

  20. Silkworth, W. T., Nardi, I. K., Scholl, L. M. & Cimini, D. Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLoS ONE 4, e6564 (2009).

    Article  Google Scholar 

  21. Kline-Smith, S. L., Khodjakov, A., Hergert, P. & Walczak, C. E. Depletion of centromeric MCAK leads to chromosome congression and segregation defects due to improper kinetochore attachments. Mol. Biol. Cell 15, 1146–1159 (2004).

    Article  CAS  Google Scholar 

  22. Andrews, P. D. et al. Aurora-B regulates MCAK at the mitotic centromere. Dev. Cell 6, 253–268 (2004).

    Article  CAS  Google Scholar 

  23. Yang, Z., Kenny, A. E., Brito, D. A. & Rieder, C. L. Cells satisfy the mitotic checkpoint in Taxol, and do so faster in concentrations that stabilize syntelic attachments. J. Cell Biol. 186, 675–684 (2009).

    Article  CAS  Google Scholar 

  24. Skoufias, D. A., Andreassen, P. R., Lacroix, F. B., Wilson, L. & Margolis, R. L. Mammalian mad2 and bub1/bubR1 recognize distinct spindle-attachment and kinetochore-tension checkpoints. Proc. Natl. Acad. Sci. USA 98, 4492–4497 (2001).

    Article  CAS  Google Scholar 

  25. Waters, J. C., Chen, R.-H., Murray, A. W. & Salmon, E. D. Localization of mad2 to kinetochores depends on microtubule attachment, not tension. J. Cell Biol. 141, 1181–1191 (1998).

    Article  CAS  Google Scholar 

  26. Bakhoum, S. F., Thompson, S. L., Manning, A. L. & Compton, D. A. Genome stability is ensured by temporal control of kinetochore-microtubule dynamics. Nat. Cell Biol. 11, 27–35 (2009).

    Article  CAS  Google Scholar 

  27. Bakhoum, S. F., Genovese, G. & Compton, D. A. Deviant kinetochore-microtubule dynamics underlie chromosomal instability. Curr. Biol. 19, R1032–R1034 (2009).

    Article  Google Scholar 

  28. Khodjakov, A. & Rieder, C. L. The nature of cell-cycle checkpoints: some facts and fallacies. J. Biol. 8, 88 (2009).

    Article  Google Scholar 

  29. Maresca, T. J. & Salmon, E. D. Welcome to a new kind of tension: translating kinetochore mechanics into a wait-anaphase signal. J. Cell Sci. 123, 825–835 (2010).

    Article  CAS  Google Scholar 

  30. Maresca, T. J. & Salmon, E. D. Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity. J. Cell Biol. 184, 373–381 (2009).

    Article  CAS  Google Scholar 

  31. Uchida, K. S. et al. Kinetochore stretching inactivates the spindle assembly checkpoint. J. Cell Biol. 184, 383–390 (2009).

    Article  CAS  Google Scholar 

  32. Dong, Y., Vanden Beldt, K. J., Meng, X., Khodjakov, A. & McEwen, B. F. The outer plate in vertebrate kinetochores is a flexible network with multiple microtubule interactions. Nat. Cell Biol. 9, 516–522 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

Research in our labs is supported by an R01 grant from the US National Institutes of Health (A.K.), a program grant from Cancer Research UK (J.P.), and a core grant (to the Gurdon Institute) from Cancer Research UK and The Wellcome Trust.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khodjakov, A., Pines, J. Centromere tension: a divisive issue. Nat Cell Biol 12, 919–923 (2010). https://doi.org/10.1038/ncb1010-919

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1010-919

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing