Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

How and Y plant microtubules branch

Plant cortical microtubule arrays influence plant morphogenesis, but the nature of microtubule genesis and self-organization has long puzzled cell biologists. In this issue, Murata and coworkers provide some answers by showing that γ-tubulin nucleates new microtubules along the lengths of existing microtubules, resulting in dispersed 'Y'-branched organizational centres.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In a growing plant cell, cortical microtubules show a net transverse alignment relative to the major growth axis.
Figure 2: Cortical microtubules are attached to the plasma membrane and these microtubules have γ-tubulin nucleating complexes associated along their length.

References

  1. Green, P.L. & Poethig, S.P. Developmental Order: Its Origin and Regulation (eds Subtelny, S. & Green, P.B.) 485–509 (Alan R. Liss, Inc., New York, 1982).

    Google Scholar 

  2. Cyr, R.J. Annu. Rev. Cell Biol. 10, 153–180 (1994).

    Article  CAS  Google Scholar 

  3. Murata, T. et al. Nature Cell Biol. 7, 961–968 (2005).

    Article  CAS  Google Scholar 

  4. Falconer, M.M., Donaldson, G. & Seagull, R.W. Protoplasma 144, 46 (1988).

    Article  Google Scholar 

  5. Mazia, D. Exp. Cell Res. 153, 1–15 (1984).

    Article  CAS  Google Scholar 

  6. Liu, B., Marc, J., Joshi, H.C. & Palevitz, B.A. Cell Sci. 104, 1217–1228 (1993).

    CAS  Google Scholar 

  7. Vaughn, K.C. & Harper, J.D. Int. Rev. Cytol. 181, 75–149 (1998).

    Article  CAS  Google Scholar 

  8. Horio, T. & Oakley, B.R. Plant Physiol. 133, 1926–1934 (2003).

    Article  CAS  Google Scholar 

  9. Bajer, A. & Mole-Bajer, J. J. Cell Biol. 102, 263–281 (1986).

    Article  CAS  Google Scholar 

  10. Hardham, A.R. & Gunning, B.E.S. J. Cell Biol. 77, 14–34 (1978).

    Article  CAS  Google Scholar 

  11. Wasteneys, G.O. & Williamson, R.E. J. Cell Sci. 93, 705–714 (1989).

    Google Scholar 

  12. Wasteneys, G.O. & Williamson, R.E. Eur. J. Cell Biol. 50, 76–83 (1989).

    Google Scholar 

  13. Wasteneys, G.O. J. Cell Sci. 115, 1345–1354 (2002).

    CAS  PubMed  Google Scholar 

  14. Burk, D.H., Liu, B., Zhong, R.Q., Morrison, W.H. & Ye, Z.H. Plant Cell 13, 807–827 (2001).

    Article  CAS  Google Scholar 

  15. Shaw, S.L., Kamyar, R. & Ehrhardt, D.W. Science 300, 1715–1718 (2003).

    Article  CAS  Google Scholar 

  16. Dixit, R. & Cyr, R. Plant Cell 16, 3274–3284 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cyr, R. How and Y plant microtubules branch. Nat Cell Biol 7, 927–929 (2005). https://doi.org/10.1038/ncb1005-927

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1005-927

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing