Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Proteins containing the UBA domain are able to bind to multi-ubiquitin chains

Abstract

The UBA domain is a motif found in a variety of proteins, some of which are associated with the ubiquitin–proteasome system1,2. We describe the isolation of a fission-yeast gene, mud1+, which encodes a UBA domain containing protein that is able to bind multi-ubiquitin chains. We show that the UBA domain is responsible for this activity. Two other proteins containing this motif, the fission-yeast homologues of Rad23 and Dsk2, are also shown to bind multi-ubiquitin chains via their UBA domains. These two proteins are implicated, along with the fission-yeast Pus1(S5a/Rpn10) subunit of the 26 S proteasome, in the recognition and turnover of substrates by this proteolytic complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The UBA domain is able to bind to multi-ubiquitin.
Figure 2: Dph1 and Rhp23 interact with the proteasome.
Figure 3: Phenotypes of the single-mutant and double-mutant rhp23-null, dph1-null and pus1-null strains.
Figure 4: Characterization and non-rescue of the growth defect observed in the pus1Δrhp23Δ by the Rhp23 mutated proteins.

Similar content being viewed by others

References

  1. Hofmann, K. & Bucher, P. Trends Biochem. Sci. 21, 172–173 (1996).

    Article  CAS  Google Scholar 

  2. Hershko, A. & Ciechanover, A. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  Google Scholar 

  3. Voges, D., Zwickl, P. & Baumeister, W. Annu. Rev. Biochem. 68, 1015–1068 (1999).

    Article  CAS  Google Scholar 

  4. Deveraux, Q., Ustrell, V., Pickart, C. & Rechsteiner, M. J. Biol. Chem. 269, 7059–7061 (1994).

    CAS  PubMed  Google Scholar 

  5. Van Nocker, S., Deveraux, Q., Rechsteiner, M. & Vierstra, R. D. Proc. Natl Acad. Sci. USA 93, 856–860 (1996).

    Article  CAS  Google Scholar 

  6. Haracska, L. & Udvardy, A. Eur. J. Biochem. 231, 720–725 (1995).

    Article  CAS  Google Scholar 

  7. Van Nocker, S., et al. Mol. Cell. Biol. 16, 6020–6028 (1996).

    Article  CAS  Google Scholar 

  8. Wilkinson, C. R. M. et al. J. Biol. Chem. 275, 15182–15192 (2000).

    Article  CAS  Google Scholar 

  9. Wilkinson, C. R. M., Wallace, M., Seeger, M., Dubiel, W. & Gordon, C. J. Biol. Chem. 272, 25768–25777 (1997).

    Article  CAS  Google Scholar 

  10. Schauber, C. et al. Nature 391, 715–718 (1998).

    Article  CAS  Google Scholar 

  11. Lombaerts, M., Goeloe, J. I., den Dulk, H., Brandsma, J. A. & Brouwer, J. Biochem. Biophys. Res. Commun. 268, 210–215 (2000).

    Article  CAS  Google Scholar 

  12. Biggins, S., Ivanovska, I. & Rose, M. D. J. Cell Biol. 133, 1331–1346 (1996).

    Article  CAS  Google Scholar 

  13. He, X., Jones, M. H., Winey, M. & Sazer, S. J. Cell Sci. 111, 1635–1647 (1998).

    CAS  PubMed  Google Scholar 

  14. Bertolaet, B. L. et al. Nature Struct. Biol. 8, 417–422 (2001).

    Article  CAS  Google Scholar 

  15. Sambrook, J. & Russell, D. Molecular Cloning (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; 2000).

    Google Scholar 

  16. Bahler, J. et al. Yeast 14, 943–951 (1998).

    Article  CAS  Google Scholar 

  17. Benito, J., Martin-Castellanos, C. & Moreno, S. EMBO J. 17, 482–497 (1998).

    Article  CAS  Google Scholar 

  18. Gordon, C., McGurk, G., Wallace, M. & Hastie, N. D. J. Biol. Chem. 271, 5704–5711 (1996).

    Article  CAS  Google Scholar 

  19. Dubiel, W. & Gordon, C. Curr. Biol. 9, R554–R557 (1999).

    Article  CAS  Google Scholar 

  20. Moreno, S., Klar, A. & Nurse, P. Methods Enzymol. 194, 793–823 (1990).

    Google Scholar 

  21. Beal, R. E. et al. Proc. Natl Acad. Sci. USA 93, 861–866 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Dubiel and K. Ferrell for advice and help with multi-ubiquitin binding experiments; C. Landgraf and R. Volkmer-Engert for advice on the BIAcore experiments; R. Layfield for advice on using the anti-ubiquitin antibody for western blot analysis; S. Moreno for the anti-Rum1 antibody; P. McLaughlin for spotting the homology between the Mud1 protein and the aspartate protease; C. Pickart for providing lysine-48-linked multi-ubiquitin chains and for comments on the manuscript; P. Perry for advice on microscopy; S. Bruce, D. Stuart and N. Davidson for photography; and K. Hendil and N. Hastie for advice, encouragement and comments on the manuscript. This work was supported by Medical Research Council funding (to C.G.), the Danish Research Academy (to R.H.-P.) and the Deutsche Forschungsgemeinschaft (to M.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Gordon.

Supplementary information

Supplementary figures

Figure S1 Proteins in fission yeast containing a UBA domain. (PDF 23 kb)

Figure S2 Surface plasmon resonance measurements of Mud1 binding to tetra-ubiquitin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilkinson, C., Seeger, M., Hartmann-Petersen, R. et al. Proteins containing the UBA domain are able to bind to multi-ubiquitin chains. Nat Cell Biol 3, 939–943 (2001). https://doi.org/10.1038/ncb1001-939

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1001-939

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing