Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human p32 protein relieves a post-transcriptional block to HIV replication in murine cells

An Addendum to this article was published on 01 September 2003

Abstract

In the mouse, replication of human immunodeficiency virus type 1 (HIV) is blocked at the levels of entry, transcription and assembly. For the latter effect, the amounts of unspliced viral genomic RNA could have an important function. Indeed, in murine cells, HIV transcripts are spliced excessively, a process that is not inhibited by the murine splicing inhibitor p32 (mp32). In marked contrast, its human counterpart, hp32, not only blocks this splicing but promotes the accumulation of viral genomic transcripts and structural proteins, resulting in the assembly and release of infectious virions. A single substitution in hp32 of Gly 35 to Asp 35, which is found in mp32, abrogates this activity. Thus, hp32 overcomes an important post-transcriptional block to HIV replication in murine cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of HIV mRNA species in infected cells.
Figure 2: Suboptimal effects of Rev in murine cells and its inhibition by ASF/SF2 in primate cells.
Figure 3: hp32 rescues the effects of Rev in murine cells.
Figure 4: Gly 35 in hp32 is critical for its effects on pCMV128 in murine cells.
Figure 5: hp32 increases levels of unspliced viral transcripts and their stability in murine cells.
Figure 6: hp32 increases production of HIV in murine cells.

Similar content being viewed by others

References

  1. Lewis, A.D. & Johnson, P.R. Developing animal models for AIDS research — progress and problems. Trends Biotechnol. 13, 142–150 (1995).

    Article  CAS  Google Scholar 

  2. Maddon, P.J. et al. The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47, 333–348 (1986).

    Article  CAS  Google Scholar 

  3. Lores, P. et al. Expression of human CD4 in transgenic mice does not confer sensitivity to human immunodeficiency virus infection. AIDS Res. Hum. Retroviruses 8, 2063–2071 (1992).

    Article  CAS  Google Scholar 

  4. Berger, E.A., Murphy, P.M. & Farber, J.M. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu. Rev. Immunol. 17, 657–700 (1999).

    Article  CAS  Google Scholar 

  5. Sawada, S. et al. Disturbed CD4+ T cell homeostasis and in vitro HIV-1 susceptibility in transgenic mice expressing T cell line-tropic HIV-1 receptors. J. Exp. Med. 187, 1439–1449 (1998).

    Article  CAS  Google Scholar 

  6. Browning, J. et al. Mice transgenic for human CD4 and CCR5 are susceptible to HIV infection. Proc. Natl Acad. Sci. USA 94, 14637–14641 (1997).

    Article  CAS  Google Scholar 

  7. Garber, M.E. & Jones, K.A. HIV-1 Tat: coping with negative elongation factors. Curr. Opin. Immunol. 11, 460–465 (1999).

    Article  CAS  Google Scholar 

  8. Taube, R., Fujinaga, K., Wimmer, J., Barboric, M. & Peterlin, B.M. Tat transactivation: a model for the regulation of eukaryotic transcriptional elongation. Virology 264, 245–253 (1999).

    Article  CAS  Google Scholar 

  9. Garber, M.E. et al. The interaction between HIV-1 Tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycT1 protein. Genes Dev. 12, 3512–3527 (1998).

    Article  CAS  Google Scholar 

  10. Trono, D. & Baltimore, D. A human cell factor is essential for HIV-1 Rev action. EMBO J. 9, 4155–4160 (1990).

    Article  CAS  Google Scholar 

  11. Shukla, R.R., Marques, S.M., Kimmel, P.L. & Kumar, A. Human chromosome 6- and 11-encoded factors support human immunodeficiency virus type 1 Rev function in A9 cells. J. Virol. 70, 9064–9068 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Malim, M.H., McCarn, D.F., Tiley, L.S. & Cullen, B.R. Mutational definition of the human immunodeficiency virus type 1 Rev activation domain. J. Virol. 65, 4248–4254 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bieniasz, P.D. & Cullen, B.R. Multiple blocks to human immunodeficiency virus type 1 replication in rodent cells. J. Virol. 74, 9868–9877 (2000).

    Article  CAS  Google Scholar 

  14. Reed, M. et al. Chimeric human immunodeficiency virus type 1 containing murine leukemia virus matrix assembles in murine cells. J. Virol. 76, 436–443 (2002).

    Article  CAS  Google Scholar 

  15. Mariani, R. et al. A block to human immunodeficiency virus type 1 assembly in murine cells. J. Virol. 74, 3859–3870 (2000).

    Article  CAS  Google Scholar 

  16. Mariani, R. et al. Mouse–human heterokaryons support efficient human immunodeficiency virus type 1 assembly. J. Virol. 75, 3141–3151 (2001).

    Article  CAS  Google Scholar 

  17. Chen, B.K., Rousso, I., Shim, S. & Kim, P.S. Efficient assembly of an HIV-1/MLV Gag-chimeric virus in murine cells. Proc. Natl Acad. Sci. USA 98, 15239–15244 (2001).

    Article  CAS  Google Scholar 

  18. Purcell, D.F. & Martin, M.A. Alternative splicing of human immunodeficiency virus type 1 mRNA modulates viral protein expression, replication and infectivity. J. Virol. 67, 6365–6378 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Peterlin, B.M. & Trono, D. Hide, shield and strike back: how HIV-infected cells avoid immune eradication. Nature Rev. Immunol. 3, 97–107 (2003).

    Article  CAS  Google Scholar 

  20. Pollard, V.W. & Malim, M.H. The HIV-1 Rev protein. Annu. Rev. Microbiol. 52, 491–532 (1998).

    Article  CAS  Google Scholar 

  21. Chang, D.D. & Sharp, P.A. Regulation by HIV Rev depends upon recognition of splice sites. Cell 59, 789–795 (1989).

    Article  CAS  Google Scholar 

  22. Wang, S.W. & Aldovini, A. RNA incorporation is critical for retroviral particle integrity after cell membrane assembly of Gag complexes. J. Virol. 76, 11853–11865 (2002).

    Article  CAS  Google Scholar 

  23. Tokunaga, K. et al. Enhancement of human immunodeficiency virus type 1 infectivity by Nef is producer cell-dependent. J. Gen. Virol. 79, 2447–2453 (1998).

    Article  CAS  Google Scholar 

  24. He, J. et al. Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J. Virol. 69, 6705–6711 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hope, T.J., Huang, X.J., McDonald, D. & Parslow, T.G. Steroid–receptor fusion of the human immunodeficiency virus type 1 Rev transactivator: mapping cryptic functions of the arginine-rich motif. Proc. Natl Acad. Sci. USA 87, 7787–7791 (1990).

    Article  CAS  Google Scholar 

  26. Luo, Y., Yu, H. & Peterlin, B.M. Cellular protein modulates effects of human immunodeficiency virus type 1 Rev. J. Virol. 68, 3850–3856 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Smith, C.W. & Valcarcel, J. Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem. Sci. 25, 381–388 (2000).

    Article  CAS  Google Scholar 

  28. Hastings, M.L. & Krainer, A.R. Pre-mRNA splicing in the new millennium. Curr. Opin. Cell Biol. 13, 302–309 (2001).

    Article  CAS  Google Scholar 

  29. Tange, T.O. & Kjems, J. SF2/ASF binds to a splicing enhancer in the third HIV-1 tat exon and stimulates U2AF binding independently of the RS domain. J. Mol. Biol. 312, 649–662 (2001).

    Article  CAS  Google Scholar 

  30. Powell, D.M., Amaral, M.C., Wu, J.Y., Maniatis, T. & Greene, W.C. HIV Rev-dependent binding of SF2/ASF to the Rev response element: possible role in Rev-mediated inhibition of HIV RNA splicing. Proc. Natl Acad. Sci. USA 94, 973–978 (1997).

    Article  CAS  Google Scholar 

  31. Pongoski, J., Asai, K. & Cochrane, A. Positive and negative modulation of human immunodeficiency virus type 1 Rev function by cis and trans regulators of viral RNA splicing. J. Virol. 76, 5108–5120 (2002).

    Article  CAS  Google Scholar 

  32. Krainer, A.R., Mayeda, A., Kozak, D. & Binns, G. Functional expression of cloned human splicing factor SF2: homology to RNA-binding proteins, U1 70K, and Drosophila splicing regulators. Cell 66, 383–394 (1991).

    Article  CAS  Google Scholar 

  33. Petersen-Mahrt, S.K. et al. The splicing factor-associated protein, p32, regulates RNA splicing by inhibiting ASF/SF2 RNA binding and phosphorylation. EMBO J. 18, 1014–1024 (1999).

    Article  CAS  Google Scholar 

  34. Tange, T.O., Jensen, T.H. & Kjems, J. In vitro interaction between human immunodeficiency virus type 1 Rev protein and splicing factor ASF/SF2-associated protein, p32. J. Biol. Chem. 271, 10066–10072 (1996).

    Article  CAS  Google Scholar 

  35. Jiang, J., Zhang, Y., Krainer, A.R. & Xu, R.M. Crystal structure of human p32, a doughnut-shaped acidic mitochondrial matrix protein. Proc. Natl Acad. Sci. USA 96, 3572–3577 (1999).

    Article  CAS  Google Scholar 

  36. Amendt, B.A., Hesslein, D., Chang, L.J. & Stoltzfus, C.M. Presence of negative and positive cis-acting RNA splicing elements within and flanking the first tat coding exon of human immunodeficiency virus type 1. Mol. Cell Biol. 14, 3960–3970 (1994).

    Article  CAS  Google Scholar 

  37. Staffa, A. & Cochrane, A. Identification of positive and negative splicing regulatory elements within the terminal tat-rev exon of human immunodeficiency virus type 1. Mol. Cell. Biol. 15, 4597–4605 (1995).

    Article  CAS  Google Scholar 

  38. Wentz, M.P., Moore, B.E., Cloyd, M.W., Berget, S.M. & Donehower, L.A. A naturally arising mutation of a potential silencer of exon splicing in human immunodeficiency virus type 1 induces dominant aberrant splicing and arrests virus production. J. Virol. 71, 8542–8551 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Caputi, M. & Zahler, A.M. SR proteins and hnRNP H regulate the splicing of the HIV-1 tev-specific exon 6D. EMBO J. 21, 845–855 (2002).

    Article  CAS  Google Scholar 

  40. Cullen, B.R. Nuclear RNA export pathways. Mol. Cell. Biol. 20, 4181–4187 (2000).

    Article  CAS  Google Scholar 

  41. Li, J., Liu, Y., Park, I.W. & He, J.J. Expression of exogenous Sam68, the 68-kilodalton SRC-associated protein in mitosis, is able to alleviate impaired Rev function in astrocytes. J. Virol. 76, 4526–4535 (2002).

    Article  CAS  Google Scholar 

  42. Reddy, T.R. et al. Inhibition of HIV replication by dominant negative mutants of Sam68, a functional homolog of HIV-1 Rev. Nature Med. 5, 635–642 (1999).

    Article  CAS  Google Scholar 

  43. Horton, R.M., Cai, Z.L., Ho, S.N. & Pease, L.R. Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques 8, 528–535 (1990).

    CAS  PubMed  Google Scholar 

  44. Neumann, J.R., Morency, C.A. & Russian, K.O. A novel rapid assay for chloramphenicol acetyl transferase gene expression. Biotechniques 5, 444–447 (1987).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Irwin for excellent technical assistance. We thank A. Adachi and K. Tokunaga for pNL-CAT (pNLenCAT) proviral clone, N. Landau for pNL-Luc (pNL-luc-ER) proviral clone and MGT5 cell line, A. Krainer for p32 and ASF/SF2 cDNAs, P. Bieniasz for pBS/HIV(78-340), and the National Institutes of Health (NIH) AIDS Research and Reference Reagent Program for various reagents. This work was supported by Research Grants from the NIH (B.M.P.), California University-wide AIDS Research Program (B.M.P., Y.-H.Z.) and a training grant from the NIH (Y.-H.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Matija Peterlin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, YH., Yu, HF. & Peterlin, B. Human p32 protein relieves a post-transcriptional block to HIV replication in murine cells. Nat Cell Biol 5, 611–618 (2003). https://doi.org/10.1038/ncb1000

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1000

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing