Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crosstalk between cAMP-dependent kinase and MAP kinase through a protein tyrosine phosphatase

Abstract

The haematopoietic protein tyrosine phosphatase (HePTP) is a negative regulator of the MAP kinases Erk1, Erk2 and p38. HePTP binds to these kinases through a kinase-interaction motif (KIM) in its non-catalytic amino terminus and inactivates them by dephosphorylating the critical phosphorylated tyrosine residue in their activation loop. Here we show that cyclic-AMP-dependent protein kinase (PKA) phosphorylates serine residue 23 in the KIM of HePTP in vitro and in intact cells. This modification reduces binding of MAP kinases to the KIM, an effect that is prevented by mutation of serine 23 to alanine. The PKA-mediated release of MAP kinase from HePTP is sufficient to activate the kinase and to induce transcription from the c-fos promoter. Expression of a HePTP serine-23-to-alanine mutant inhibits MAP-kinase dissociation and activation and induction of transcription from the c-fos promoter. We conclude that HePTP not only controls the activity of MAP kinases, but also mediates crosstalk between the cAMP system and the MAP-kinase cascade.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mapping of Ser 23 as a phosphorylation site in HePTP in T cells.
Figure 2: Dissociation of MAP kinase from HePTP by phosphorylation of HePTP at Ser 23.
Figure 3: Inhibition of cAMP-induced activation of MAP kinase by HePTP(S23A).
Figure 4: cAMP-induced c-fos activation.
Figure 5: HePTP(S23A) blocks antigen-receptor-induced MAP-kinase and c-fos activation.
Figure 6: Model for signal integration by HePTP.

Similar content being viewed by others

References

  1. Scott, J. D. Cyclic nucleotide-dependent protein kinases. Pharmacol. Ther. 50, 123–145 (1991).

    Article  CAS  Google Scholar 

  2. Skålhegg, B. S. & Taskén, K. Specificity in the cAMP/PKA signaling pathway. Differential expression, regulation, and subcellular localization of subunits of PKA. Front. Biosci. [online] 2, d331–342 <http://www.bioscience.org/>(1997).

    Article  Google Scholar 

  3. Kammer, G. M. The adenylate cyclase-cAMP-protein kinase A pathway and regulation of the immune response. Immunol. Today 9, 222–229 (1988).

    Article  CAS  Google Scholar 

  4. Ledbetter, J. A. et al. Antibody binding to CD5 (Tp67) and Tp44 T cell surface molecules: effects on cyclic nucleotides, cytoplasmic free calcium, and cAMP-mediated suppression. J. Immunol. 137, 3299–3305 (1986).

    CAS  PubMed  Google Scholar 

  5. Kammer, G. M., Boehm, C. A., Rudolph, S. A. & Schultz, L. A. Mobility of the human T lymphocyte surface molecules CD3, CD4, and CD8: regulation by a cAMP-dependent pathway. Proc. Natl Acad. Sci. USA 85, 792–796 (1988).

    Article  CAS  Google Scholar 

  6. Skålhegg, B. S. et al. Cyclic AMP-dependent protein kinase type I mediates the inhibitory effects of 3",5"-cyclic adenosine monophosphate on cell replication in human T lymphocytes. J. Biol. Chem. 267, 15707–15714 (1992).

    PubMed  Google Scholar 

  7. Choudhry, M. A., Uddin, S. & Sayeed, M. M. Prostaglandin E2 modulation of p59fyn tyrosine kinase in T lymphocytes during sepsis. J. Immunol. 160, 929–935 (1998).

    CAS  PubMed  Google Scholar 

  8. Skålhegg, B. S. et al. Location of cAMP-dependent protein kinase type I with the TCR/CD3 complex. Science 263, 84–87 (1994).

    Article  Google Scholar 

  9. Levy, F. O. et al. Cyclic AMP-dependent protein kinase (cAK) in human B cells: co-localization of type I cAK (RIα2C2) with the antigen receptor during anti-immunoglobulin-induced B cell activation. Eur. J. Immunol. 26, 1290–1296 (1996).

    Article  CAS  Google Scholar 

  10. Torgersen, K. M. et al. Selective activation of cAMP-dependent protein kinase type I inhibits rat natural killer cell cytotoxicity. J. Biol. Chem. 272, 5495–5500 (1997).

    Article  CAS  Google Scholar 

  11. Whisler, R. L., Beiqing, L., Grants, I. S. & Newhouse, Y. G. Cyclic AMP modulation of human B cell proliferative responses: role of cAMP-dependent protein kinases in enhancing B cell responses to phorbol diesters and ionomycin. Cell. Immunol. 142, 398–415 (1992).

    Article  CAS  Google Scholar 

  12. Kammer, G. M., Khan, I. U. & Malemud, C. J. Deficient type I protein kinase A isozyme activity in systemic lupus erythematosus T lymphocytes. J. Clin. Invest. 94, 422–430 (1994).

    Article  CAS  Google Scholar 

  13. Aandahl, E. M. et al. Protein kinase A type I antagonist restores immune responses of T cells from HIV-infected patients. FASEB J. 12, 855–862 (1998).

    Article  CAS  Google Scholar 

  14. Mustelin, T. et al. Lymphocyte activation: the coming of the phosphatases. Front. Biosci. [online] 3, d1060–1096 < http://www.bioscience.org/> (1998).

    Article  CAS  Google Scholar 

  15. Mustelin, T. et al. The next wave: protein tyrosine phosphatases enter T cell antigen receptor signaling. Cell. Signal. (in the press).

  16. Zanke, B. et al. Cloning and expression of an inducible lymphoid-specific protein tyrosine phosphatase (HePTPase). Eur. J. Immunol. 22 235–239 (1992).

    Article  CAS  Google Scholar 

  17. Saxena, M., Williams, S., Gilman, J. & Mustelin, T. Negative regulation of T cell antigen receptor signaling by hematopoietic tyrosine phosphatase (HePTP). J. Biol. Chem. 273, 15340–15344 (1998).

    Article  CAS  Google Scholar 

  18. Saxena, M., Williams, S., Brockdorff, J., Gilman, J. & Mustelin, T. Inhibition of T cell signaling by MAP kinase-targeted hematopoietic tyrosine phosphatase (HePTP). J. Biol. Chem. 274, 11693–11700 (1999).

    Article  CAS  Google Scholar 

  19. Lombroso, P. J., Murdoch, G. & Lerner, M. Molecular characterization of a protein-tyrosine-phosphatase enriched in striatum. Proc. Natl Acad. Sci. USA 88, 7242–7246 (1991).

    Article  CAS  Google Scholar 

  20. Sharma, E. & Lombroso, P. J. A neuronal protein tyrosine phosphatase induced by nerve growth factor. J. Biol. Chem. 270, 49–53 (1995).

    Article  CAS  Google Scholar 

  21. Shiozuka, K. Y., Watanabe, T., Ikeda, S., Hashimoto, S. & Kawashima, H. Cloning and expression of PCPTP1 encoding protein tyrosine phosphatase. Gene 162, 279–284 (1995).

    Article  CAS  Google Scholar 

  22. Ogata, M., Sawada, M., Fujino, Y. & Hamaoka, T. cDNA cloning and characterization of a novel receptor-type protein tyrosine phosphatase expressed predominantly in the brain. J. Biol. Chem. 270, 2337–2343 (1995).

    Article  CAS  Google Scholar 

  23. Pulido, R., Zuñiga, A. & Ullrich, A. PTP-SL and STEP protein tyrosine phosphatases regulate the activation of the extracellular signal-regulated kinases ERK1 and ERK2 by association through a kinase interaction motif. EMBO J. 17, 7337–7350 (1998).

    Article  CAS  Google Scholar 

  24. Sweiter, M., Berenstein, E. H., Swaim, W. D. & Siraganian, R. P. Aggregation of IgE receptors in rat basophilic leukemia 2H3 cells induce tyrosine phosphorylation of the cytosolic protein-tyrosine phosphatase HePTP. J. Biol. Chem. 270, 21902–21906 (1995).

    Article  Google Scholar 

  25. Cobb, M. H. et al. Regulation of the MAP kinase cascade. Cell. Mol. Biol. Res. 40, 253–256 (1994).

    CAS  PubMed  Google Scholar 

  26. Flint, A. J., Tiganis, T., Barford, D. & Tonks, N. K. Development of “substrate-trapping” mutants to identify physiological substrates of protein tyrosine phosphatases. Proc. Natl Acad. Sci. USA 94, 1680–1685 (1997).

    Article  CAS  Google Scholar 

  27. Chen, T., Cho, R. W., Stork, P. J. S. & Weber, M. J. Elevation of cyclic adenosine 3",5"-monophosphate potentiates activation of mitogen-activated protein kinase by growth factors in LNCaP prostate cancer cells. Cancer Res. 59, 213–218 (1999).

    CAS  PubMed  Google Scholar 

  28. Straus, D. B. & Weiss, A. Genetic evidence for the involvement of the lck tyrosine kinase in signal transduction through the T cell antigen receptor. Cell 70, 585–593 (1992).

    Article  CAS  Google Scholar 

  29. Whitmarsh, A. J., Shore, P., Sharrocks, A. D. & Davis, R. J. Integration of MAP kinase signal transduction pathways at the serum response element. Science 269, 403–407 (1995).

    Article  CAS  Google Scholar 

  30. Keyse, S. M. & Emslie, E. A. Oxidative stress and heat shock induce a human gene encoding a protein tyrosine phosphatase. Nature 359, 644–647 (1992).

    Article  CAS  Google Scholar 

  31. Rohan, P. J. et al. PAC-1: a mitogen-induced nuclear protein tyrosine phosphatase. Science 259, 1763–1766 (1993).

    Article  CAS  Google Scholar 

  32. Noguchi, T. et al. Structure, mapping, and expression of erp, a growth factor-inducible gene encoding a nontransmembrane protein tyrosine phosphatase, and effect of ERP on cell growth. Mol. Cell. Biol. 13, 5195–5205 (1993).

    Article  CAS  Google Scholar 

  33. Sun, H., Charles, C. H., Lau, L. F. & Tonks, N. K. MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo. Cell 75, 487–493 (1994).

    Article  Google Scholar 

  34. Muda, M. et al. MKP-3, a novel cytosolic protein-tyrosine phosphatase that exemplifies a new class of mitogen-activated protein kinase phosphatase. J. Biol. Chem. 271, 4319–4326 (1996).

    Article  CAS  Google Scholar 

  35. Camps, M. et al. Catalytic activation of the phosphatase MKP-3 by Erk2 mitogen-activated protein kinase. Science 280, 1262–1265 (1998).

    Article  CAS  Google Scholar 

  36. Kemp, B. E. & Pearson, R. B. Protein kinase recognition sequence motifs. Trends Biochem. Sci. 15, 342–346 (1990).

    Article  CAS  Google Scholar 

  37. Garton, A. & Tonks, N. K. PTP-PEST: a protein tyrosine phosphatase regulated by serine phosphorylation. EMBO J. 13, 3763–3771 (1994).

    Article  CAS  Google Scholar 

  38. Zhang, S.-H., Kobayashi, R., Graves, P. R., Piwnica-Worms, H. & Tonks, N. K. Serine phosphorylation-dependent association of the Band 4.1-related protein tyrosine phosphatase PTPH1 with 14-3-3β protein. J. Biol. Chem. 272, 27281–27287 (1997).

    Article  CAS  Google Scholar 

  39. Montminy, M. R. & Bilezikjian, L. M. Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature 328, 175–178 (1987).

    Article  CAS  Google Scholar 

  40. Graves, L. M. et al. Protein kinase A antagonizes platelet-derived growth factor-induced signaling by mitogen-activated protein kinase in human arterial smooth muscle cells. Proc. Natl Acad. Sci. USA 90, 10300–10304 (1993).

    Article  CAS  Google Scholar 

  41. Cook, S. J. & McCormick, F. Inhibition by cAMP of Ras-dependent activation of Raf. Science 262, 1069–1072 (1993).

    Article  CAS  Google Scholar 

  42. von Willebrand, M. et al. Inhibition of phosphatidylinositol 3-kinase blocks TCR/CD3-induced activation of the mitogen-activated kinase Erk2. Eur. J. Biochem. 235, 828–835 (1996).

    Article  CAS  Google Scholar 

  43. Hata, D. et al. Bruton’s tyrosine kinase-mediated interleukin-2 gene activation in mast cells. J. Biol. Chem. 273, 10979–10987 (1998).

    Article  CAS  Google Scholar 

  44. Williams, S. et al. Reconstitution of TCR-induced Erk2 kinase activation in Lck-negative JCaM1 cells by Syk, but not Zap. Eur. J. Biochem. 245, 84–90 (1997).

    Article  CAS  Google Scholar 

  45. Jascur, T., Gilman, J. & Mustelin, T. Involvement of phosphatidylinositol 3-kinase in NFAT activation in T cells. J. Biol. Chem. 272, 14483–14488 (1997).

    Article  CAS  Google Scholar 

  46. Luo, K., Hurley, T. R. & Sefton, B. M. Transfer of proteins to membranes facilitates both cyanogen bromide cleavage and two-dimensional proteolytic mapping. Oncogene 5, 921–923 (1990).

    CAS  PubMed  Google Scholar 

  47. Couture, C. et al. Regulation of the Lck SH2 domain by tyrosine phosphorylation. J. Biol. Chem. 271, 24880–24884 (1996).

    Article  CAS  Google Scholar 

  48. Bergman, M. et al. The human p50csk tyrosine kinase phosphorylates p56lck at Tyr-505 and down regulates its catalytic activity. EMBO J. 11, 2919–2924 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Zanke for HePTP cDNA and for discussions; J. Schnitzer for comments on the manuscript; and M. Pelimiano and D. Hammi for technical assistance. This work was supported by NIH grants AI35603, AI41481 and AI40552.

Correspondence and requests for materials should be addressed to T.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Mustelin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saxena, M., Williams, S., Taskén, K. et al. Crosstalk between cAMP-dependent kinase and MAP kinase through a protein tyrosine phosphatase. Nat Cell Biol 1, 305–310 (1999). https://doi.org/10.1038/13024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/13024

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing