Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Four-dimensional imaging and quantitative reconstruction to analyse complex spatiotemporal processes in live cells

Abstract

Live-cell imaging technology using fluorescent proteins (green fluorescent protein and its homologues) has revolutionized the study of cellular dynamics1,2. But tools that can quantitatively analyse complex spatiotemporal processes in live cells remain lacking. Here we describe a new technique — fast multi-colour four-dimensional imaging combined with automated and quantitative time-space reconstruction — to fill this gap. As a proof of principle, we apply this method to study the re-formation of the nuclear envelope in live cells3,4,5,6. Four-dimensional imaging of three spectrally distinct fluorescent proteins is used to simultaneously visualize three different cellular compartments at high speed and with high spatial resolution. The highly complex data, comprising several thousand images from a single cell, were quantitatively reconstructed in time–space by software developed in-house. This analysis reveals quantitative and qualitative insights into the highly ordered topology of nuclear envelope formation, in correlation with chromatin expansion — results that would have been impossible to achieve by manual inspection alone. Our new technique will greatly facilitate study of the highly ordered dynamic architecture of eukaryotic cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three-dimensional reconstruction of LBR–YFP recruitment to patches on chromatin surface.
Figure 2: High-speed 4D imaging of early LBR patch formation on chromatin surface.
Figure 3: Synchronized expansion of nuclear envelope and chromatin domain.

Similar content being viewed by others

References

  1. Lamond, A. I. & Earnshaw, W. C. Science 280, 547–553 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Misteli, T. Science 291, 843–847 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Ellenberg, J. et al. J. Cell Biol. 138, 1193–1206 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Haraguchi, T. et al. J. Cell Sci. 113, 779–794 (2000).

    CAS  PubMed  Google Scholar 

  5. Collas, I. & Courvalin, J. C. Sorting nuclear membrane proteins at mitosis. Trends Cell Biol. 10, 5–8 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Marshall, I. C. B. & Wilson, K. L. Trends Cell Biol. 7, 69–74 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Eils, R., Gerlich, D., Tvarusko, W., Spector, D. L. & Misteli, T. Mol. Biol. Cell 11, 413–418 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Belmont, A. S., Dietzel, S., Nye, A. C., Strukov, Y. G. & Tumbar, T. Curr. Opin. Cell Biol. 11, 307–311 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Lippincott-Schwartz, J. et al. Methods Cell Biol. 58, 261–281 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Tvaruskó, W. et al. Proc. Natl Acad. Sci. USA 96, 7950–7955 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Qian, H., Sheetz, M. P. & Elson, E. L. Biophys. J. 60, 910–921 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marshall, W. F. et al. Interphase chromosomes undergo constrained diffusional motion in living cells. Curr. Biol. 7, 930–939 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Rustom, A. et al. Biotechniques 28, 722–730 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Thomas, C. F. & White, J. G. Trends Biotechnol. 16, 175–182 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Black, M. J., Sapiro, G., Marimont, D. & Heeger, D. IEEE Trans. Image Process. 7, 421–432 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Watt, A. & Watt, M. Advanced Animation and Rendering Techniques (ed. Wegner, P.) (Addison-Wesley, New York, 1992).

    Google Scholar 

  17. Terasaki, M. Mol. Biol. Cell 11, 897–914 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gerace, L. & Burke, B. Annu. Rev. Cell Biol. 4, 335–374 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Tsien, R. Y. Annu. Rev. Biochem. 67, 509–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Matz, M. V. et al. Nature Biotechnol. 17, 969–973 (1999); erratum ibid. 17, 1227 (1999).

    Article  CAS  Google Scholar 

  21. Niswender, K. D., Blackman, S. M., Rohde, L., Magnuson, M. A. & Piston, D. W. J. Microsc. 180, 109–116 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Akey, C. W. J. Mol. Biol. 248, 273–293 (1995).

    CAS  PubMed  Google Scholar 

  23. Besl, P. J. & McKay, N. D. IEEE Trans. Pattern Analysis Machine Intelligence 14, 239–256 (1992).

    Article  Google Scholar 

  24. Bodoor, K. et al. J. Cell Sci. 112, 2253–2264 (1999).

    CAS  PubMed  Google Scholar 

  25. Broers, J. L. et al. J. Cell Sci. 112, 3463–3475 (1999).

    CAS  PubMed  Google Scholar 

  26. Chaudhary, N. & Courvalin, J.-C. J. Cell Biol. 122, 295–306 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Ellenberg, J. & Lippincott-Schwartz, J. Methods 19, 362–372 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Oakley for the γ-tubulin cDNA; N. Daigle for technical assistance; J. Mattes for providing the matching algorithm; and C. Conrad and C. Athale for critical comments on the manuscript. The bioinformatics group acknowledges the support of the German Federal Ministry of Education and Research (BMBF) through the BioFuture grant (AZ 11880A) and of the German Research Council (Ei 358/2-1 and Ei 358/1-1). J.B. was supported by a fellowship through EMBL's international Ph.D. programme. Part of this work was performed in collaboration with T.I.L.L.-Photonics, Munich, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Eils.

Supplementary information

Supplementary figures

Figure S1 Detailed description of 3-D reconstruction technique (PDF 317 kb)

Figure S2 Integration of LBR into patches and the NE measured in single slices versus 4-D analysis

Figure S3 Comparison of volume expansion quantified with 4-D methods versus 2-D analysis in projected image stacks

Figure S4 Reliability of 4-D quantification with threshold segmentation

Supplementary movie

Movie 1 800 1000 Movie 1 Assembly of image stack from optical slices and reconstruction of a 3-D surface model of LBR-EYFP patches (green) on chromatin surface (red). First, the pre-processed optical image slices of a single image stack are displayed sequentially. Then, they are removed stepwise to reveal the 3-D reconstructed surface model. For further details see fig. 1. (MOV 285 kb)

Supplementary movie

Movie 2 Animated sequence of 3-D reconstructions of early LBR patch formation on chromatin surface. For details see fig. 2. (MOV 1659 kb)

Supplementary movie

Movie 3 Morphed reconstruction of NE and chromatin expansion. Four intermediate states of chromatin and NE surfaces per time frame were interpolated, thereby increasing temporal resolution. For details see fig. 3. (MOV 1022 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerlich, D., Beaudouin, J., Gebhard, M. et al. Four-dimensional imaging and quantitative reconstruction to analyse complex spatiotemporal processes in live cells. Nat Cell Biol 3, 852–855 (2001). https://doi.org/10.1038/ncb0901-852

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0901-852

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing