Abstract
The nucleus is known to be compartmentalized into units of function1, but the processes leading to the spatial organization of chromosomes and nuclear compartments are not yet well defined. Here we report direct quantitative analysis of the global structural perturbations of interphase chromosome and interchromosome domain distribution caused by infection with herpes simplex virus-1 (HSV-1). Our results show that the peripheral displacement of host chromosomes that correlates with expansion of the viral replication compartment (VRC)2,3,4,5 is coupled to a twofold increase in nuclear volume. Live cell dynamic measurements suggest that viral compartment formation is driven by the functional activity of viral components and underscore the significance of spatial regulation of nuclear activities.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Chromatin organization regulates viral egress dynamics
Scientific Reports Open Access 16 June 2017
-
Nuclear morphologies: their diversity and functional relevance
Chromosoma Open Access 08 September 2016
-
Herpes simplex virus 1 induces egress channels through marginalized host chromatin
Scientific Reports Open Access 28 June 2016
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Lamond, A. I. & Earnshaw, W. C. Science 280, 547–553 (1998).
Quinlan, M. P., Chen, L. B. & Knipe, D. M. Cell 36, 857– 868 (1984).
Rixon, F. J., Atkinson, M. A. & Hay, J. J. Gen. Virol. 64, 2087– 2092 (1983).
Randall, R. E. & Dinwoodie, N. J. Gen. Virol. 67, 2163–2177 (1986).
de Bruyn Kops, A. & Knipe, D. M. Cell 55, 857–868 (1988).
Sirtori, C. & Bosisio-Bestetti, M. Cancer Res. 27, 367–376 (1967).
Schwartz, J. & Roizman, B. Virology 38, 42–49 (1969).
Roizman, B. & Furlong, D. in Comprehensive Virology, Vol. 3 (eds Fraenkel-Conrat, H. & Wagner, R.) 229– 403 (Plenum Press, New York, 1974).
Dupuy-Coin, A. M., Arnoult, J. & Bouteille, M. J. Ultrastruct. Res. 65, 60– 72 (1978).
Everett, R. D. & Maul, G. G. EMBO J. 13, 5062–5069 (1994).
Maul, G. G., Ishov, A. M. & Everett, R. D. Virology 217, 67– 75 (1996).
Uprichard, S. L. & Knipe, D. M. Virology 229, 113–125 (1997).
Puvion-Dutilleul, F. & Puvion, E. Eur. J. Cell Biol. 49, 99–109 ( 1989).
Puvion-Dutilleul, F. & Besse, S. Chromosoma 103, 104–110 (1994).
Kanda, T., Sullivan, K. F. & Wahl, G. M. Curr Biol. 8, 377– 385 (1998).
Puvion-Dutilleul, F. Electron Microsc. Rev. 1, 279–339 (1988).
Mao, J. C. & Robishaw, E. E. Biochemistry 14, 5475–5479 (1975).
de Bruyn Kops, A. & Knipe, D. M. J. Virol. 68, 3512–3526 (1994).
Singer, R. H. & Green, M. R. Cell 91, 291–294 (1997).
Karpen, G. H., Schaefer, J. E. & Laird, C. D. Genes Dev. 2, 1745– 1763 (1988).
Oakes, M. et al. J. Cell Biol. 143, 23– 34 (1998).
Cockell, M. & Gasser, S. M. Curr. Opin. Genet. Dev. 9, 199–205 (1999).
Hecht, A., Laroche, T., Strahl-Bolsinger, S., Gasser, S. M. & Grunstein, M. Cell 80, 583–592 (1995).
Tjerneld, F. & Johansson, H. O. Int. Rev. Cytol. 192, 137–151 (2000).
Cremer, T. et al. Cold Spring Harb. Symp. Quant. Biol. 58, 777–792 (1993).
Politz, J. C., Tuft, R. A., Pederson, T. & Singer, R. H. Curr. Biol. 9, 285–291 ( 1999).
Sullivan, K. F., Hechenberger, M. & Masri, K. J. Cell Biol. 127, 581– 592 (1994).
Sullivan, K. F. & Shelby, R. D. Methods Cell Biol. 58, 183–202 ( 1999).
Gilula, N. B., Epstein, M. L. & Beers, W. H. J. Cell Biol. 78, 58– 75 (1978).
Parazza, F., Humbert, C. & Usson, Y. Comput. Med. Imaging Graphics 17, 189–200 (1993).
Acknowledgements
We thank M. R. Wood for his great technical expertise with the electron microscopy study, R. D. Shelby for technical assistance and Y. Usson for making available Edit3D and Ana3D software. This work was supported by grants from the National Institute of General Medical Sciences, GM39068 (K.F.S.) and the National Institute for Allergy and Infectious Disease, AI30627 and Novartis (P.G.).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Monier, K., Armas, J., Etteldorf, S. et al. Annexation of the interchromosomal space during viral infection. Nat Cell Biol 2, 661–665 (2000). https://doi.org/10.1038/35023615
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/35023615
This article is cited by
-
Nuclear dihydroxyacetone phosphate signals nutrient sufficiency and cell cycle phase to global histone acetylation
Nature Metabolism (2021)
-
Three-dimensional reconstruction of the distribution of elemental tags in single cells using laser ablation ICP-mass spectrometry via registration approaches
Analytical and Bioanalytical Chemistry (2019)
-
Chromatin organization regulates viral egress dynamics
Scientific Reports (2017)
-
Nuclear morphologies: their diversity and functional relevance
Chromosoma (2017)
-
Role of ND10 nuclear bodies in the chromatin repression of HSV-1
Virology Journal (2016)