Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Meeting Report
  • Published:

Twenty years of cell-cycle conferences in Roscoff

Abstract

At the end of April 2008, the cell-cycle community celebrated the twentieth anniversary of the Jacques-Monod cell-cycle conferences in Roscoff (France), where the discovery of Cdk1 as a key cell-cycle regulator was first discussed in 1988.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Cell-cycle biologists at work.

References

  1. Gruber, S., Haering, C.H. & Nasmyth, K. Chromosomal cohesin forms a ring. Cell 112, 765–777 (2003).

    Article  CAS  Google Scholar 

  2. Skibbens, R.V., Corson, L.B., Koshland, D. & Hieter, P. Ctf7p is essential for sister chromatid cohesion and links mitotic chromosome structure to the DNA replication machinery. Genes Dev. 13, 307–319 (1999).

    Article  CAS  Google Scholar 

  3. Toth, A. et al. Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev. 13, 320–333 (1999).

    Article  CAS  Google Scholar 

  4. Kueng, S. et al. Wapl controls the dynamic association of cohesin with chromatin. Cell 127, 955–967 (2006).

    Article  CAS  Google Scholar 

  5. Gandhi, R., Gillespie, P.J. & Hirano, T. Human Wapl is a cohesin-binding protein that promotes sister-chromatid resolution in mitotic prophase. Curr. Biol. 16, 2406–2417 (2006).

    Article  CAS  Google Scholar 

  6. Bernard, P. et al. Cell-cycle regulation of cohesin stability along fission yeast chromosomes. EMBO J. 27, 111–121 (2008).

    Article  CAS  Google Scholar 

  7. Guo, J.Y. et al. Aven-dependent activation of ATM following DNA damage. Curr. Biol. (2008).

  8. Archambault, V., Zhao, X., White-Cooper, H., Carpenter, A.T. & Glover, D.M. Mutations in Drosophila Greatwall/Scant reveal its roles in mitosis and meiosis and interdependence with Polo kinase. PLoS Genetics 3, e200 (2007).

    Article  Google Scholar 

  9. Chan, E.H., Santamaria, A., Sillje, H.H. & Nigg, E.A. Plk1 regulates mitotic Aurora A function through βTrCP-dependent degradation of hBora. Chromosoma advance online publication, doi:10.1007/s00412-008-0165-5 (3 June 2008).

  10. Kleylein-Sohn, J. et al. Plk4-induced centriole biogenesis in human cells. Dev. Cell 13, 190–202 (2007).

    Article  CAS  Google Scholar 

  11. Bettencourt-Dias, M. et al. SAK/PLK4 is required for centriole duplication and flagella development. Curr. Biol. 15, 2199–2207 (2005).

    Article  CAS  Google Scholar 

  12. Basto, R. et al. Centrosome amplification can initiate tumorigenesis in flies. Cell 133, 1032–1042 (2008).

    Article  CAS  Google Scholar 

  13. Tsou, M.F. & Stearns, T. Mechanism limiting centrosome duplication to once per cell cycle. Nature 442, 947–951 (2006).

    Article  CAS  Google Scholar 

  14. Ciferri, C. et al. Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex. Cell 133, 427–439 (2008).

    Article  CAS  Google Scholar 

  15. Nakano, M. et al. Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev. Cell 14, 507–522 (2008).

    Article  CAS  Google Scholar 

  16. De Antoni, A. et al. The Mad1/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint. Curr. Biol. 15, 214–225 (2005).

    Article  CAS  Google Scholar 

  17. Buffin, E., Emre, D. & Karess, R.E. Flies without a spindle checkpoint. Nature Cell Biol. 9, 565–572 (2007).

    Article  CAS  Google Scholar 

  18. Holt, L.J., Krutchinsky, A.N. & Morgan, D.O. Positive feedback sharpens the anaphase switch. Nature advance online publication, doi:10.1038/nature07050 (15 Jun 2008).

  19. Zuccolo, M. et al. The human Nup107-160 nuclear pore subcomplex contributes to proper kinetochore functions. EMBO J. 26, 1853–1864 (2007).

    Article  CAS  Google Scholar 

  20. Torosantucci, L., De Luca, M., Guarguaglini, G., Lavia, P. & Degrassi, F. Localized RanGTP accumulation promotes microtubule nucleation at kinetochores in somatic mammalian cells. Mol. Biol. Cell 19, 1873–1882 (2008).

    Article  CAS  Google Scholar 

  21. Arnaoutov, A. et al. Crm1 is a mitotic effector of Ran-GTP in somatic cells. Nature Cell Biol. 7, 626–632 (2005).

    Article  CAS  Google Scholar 

  22. Norden, C. et al. The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage. Cell 125, 85–98 (2006).

    Article  CAS  Google Scholar 

  23. Ramadan, K. et al. Cdc48/p97 promotes reformation of the nucleus by extracting the kinase Aurora B from chromatin. Nature 450, 1258–1262 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vernos, I., Peters, JM. Twenty years of cell-cycle conferences in Roscoff. Nat Cell Biol 10, 877–880 (2008). https://doi.org/10.1038/ncb0808-877

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0808-877

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing