Oncogenes in Ras signalling pathway dictate host-cell permissiveness to herpes simplex virus 1

Article metrics


The importance of herpes simplex viruses (HSV) as human pathogens and the emerging prospect of using mutant derivatives of HSV-1 as potential anti-cancer therapeutics have necessitated a thorough investigation into the molecular basis of host-cell permissiveness to HSV. Here we show that NIH-3T3 cells transformed with the oncogenes v-erbB, activated sos or activated ras become significantly more permissive to HSV-1. Inhibitors of the Ras signalling pathway, such as farnesyl transferase inhibitor 1 and PD98059, effectively suppressed HSV-1 infection of ras-transformed cells. Enhanced permissiveness of the transformed cells was linked to the inhibition of virus-induced activation (phosphorylation) of the double-stranded RNA-activated protein kinase (PKR), thereby allowing viral transcripts to be translated in these cells. An HSV-1-derived oncolytic mutant, R3616, was also found to infect preferentially both transformed cells and PKR/ (but not PKR+/+) mouse embryo fibroblasts. These observations suggest that HSV-1 specifically targets cells with an activated Ras signalling pathway, and have important ramifications in the use of engineered HSV in cancer therapy, the development of strategies against HSV infections, and the controversial role of HSV in human cancers.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Effect of various oncogenes (v-erbB, activated sos, activated ras) on host-cell permissiveness to HSV-1 infection.
Figure 2: Effect of various Ras pathway inhibitors on HSV-1 infection in H-ras cells.
Figure 3: HSV-1-specific RT–PCR products in infected NIH-3T3 cells and H-ras cells.
Figure 4: Host-cell permissiveness to HSV-1 is linked to PKR phosphorylation status on infection.
Figure 5: Infection of transformed cell lines and PKR+/+ and PKR−/− mouse embryo fibroblasts by HSV-1 and R3616.
Figure 6: Involvement of Ras in the determination of host-cell permissiveness to viruses.


  1. 1

    Whitley, R. J., Kimberlin, D. W. & Roizman, B. Clin. Infect. Dis. 26, 541–555 (1998).

  2. 2

    Markert, J. M. et al. Rev. Med. Virol. 10, 17–30 (2000).

  3. 3

    Andreansky, S. S. et al. Cancer Res. 57, 1502–1509 (1997).

  4. 4

    Yazaki, T., Manz, H. J., Rabkin, S. D. & Martuza, R. L. Cancer Res. 55, 4752–4756 (1995).

  5. 5

    Oyama, M. et al. Hum. Gene Ther. 10, 1683–1693 (2000).

  6. 6

    Coukos, G. et al. Cancer Gene Ther. 7, 275–283 (2000).

  7. 7

    Sundaresan, P., Hunter, W. D., Martuza, R. L. & Rabkin, S. D. J. Virol. 74, 3832–3841 (2000).

  8. 8

    Markert, J. M. et al. Gene Ther. 7, 867–874 (2000).

  9. 9

    Shields, J. M., Pruitt, K., McFall, A., Shaub, A. & Der C. J. Trends Cell Biol. 10, 147–154 (2000).

  10. 10

    Gibbs, J. B. et al. Curr. Opin. Chem. Biol. 1, 197–203 (1997).

  11. 11

    Garrington, T. P. & Johnson, G. L. Curr. Opin. Cell Biol. 11, 211–218 (1999).

  12. 12

    Roovers, K. & Assoian, R. K. BioEssays 22, 818–826 (2000).

  13. 13

    Dudley, D. T., Pang, L., Decker, S. J., Bridges, A. J. & Saltiel, A. R. Proc. Natl Acad. Sci. USA 92, 7686–7689 (1995).

  14. 14

    Cuenda, A. et al. FEBS Lett. 364, 229–233 (1995).

  15. 15

    Dong, Z., Huang, C. & Ma, W. Y. Anticancer Res. 19, 3743–3747 (1999).

  16. 16

    Nakamura, I. et al. J. Cell Physiol. 172, 230–239 (1997).

  17. 17

    White, M. A. et al. Cell 24, 533–541 (1995).

  18. 18

    Khosravi-Far, R. et al. Mol. Cell Biol. 16, 3923–3933 (1996).

  19. 19

    Webb, C. P., Van Aelst, L., Wigler, M. H. & Woude, G. F Proc. Natl Acad. Sci. USA 21, 8773–8778 (1998).

  20. 20

    Roizman, B. & Sears. A. E. in Fields Virology (eds Fields, B. N., Knipe, D. M. & Howley, P. M.) 2231–2295 (Lippincott-Raven, Philadelphia, 1996).

  21. 21

    Williams, B. R. Oncogene 18, 6112–6120 (1999).

  22. 22

    Clemens, M. J. & Elia, A. J. Interferon Cytokine Res. 17, 503–524 (1997).

  23. 23

    Andreansky, S. S. et al. Proc. Natl Acad. Sci. USA 93, 11313–11318 (1996).

  24. 24

    He, B., Gross, M. & Roizman, B. Proc. Natl Acad. Sci. USA 94, 843–848 (1997).

  25. 25

    Slamon, D. J. & Cline, M. J. Proc. Natl Acad. Sci. USA 81, 7141–7155 (1984).

  26. 26

    Strong, J. E., Coffey, M. C., Tang, D., Sabinin, P. & Lee, P. W. K. EMBO J. 17, 3351–3362 (1998).

  27. 27

    Coffey, M. C., Strong, J. E., Forsyth, P. A. & Lee, P. W. K. Science 282, 1332–1334 (1998).

  28. 28

    Jones, C. Clin. Microbiol. Rev. 8, 549–556 (1995).

  29. 29

    Helbing, C. C., Veillette, C., Riabowol, K., Johnston, R. N. & Garkavtsev, I. Cancer Res. 57, 1255–1258 (1997).

  30. 30

    Chou, J., Kern, E. R., Whitley, R. J. & Roizman, B. Science 250, 1262–1266 (1990).

Download references


We thank B. Roizman for the HSV-1 (strain F) and mutant R3616; D. Faller for the NIH-3T3 and H-ras-transformed cells; M. Karin for sos-transformed cells (TNIH#5); H.-J. Kung for THC-11 cells; B. Williams for the PKR/ and PKR+/+ mouse embryo fibroblasts; R. N. Johnston for NIH3T3 c-myc cells; C. P. Webb for Ras effector domain mutant cell lines; P. Olivo for the anti-ICP8 antibody; K. M. Lee and K. Fonseca for assistance with immunofluorescence studies; and W. Yong, F. Yong, M. Schultz and D. Bazett-Jones for assistance with microscopy. This work was supported by the Canadian Institutes of Health Research (P.W.K.L.). F.F. is a recipient of a Studentship from the Canadian Institutes of Health Research.

Author information

Correspondence to Patrick W. K. Lee.

Rights and permissions

Reprints and Permissions

About this article

Further reading