Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions

Abstract

Centromere function requires the coordination of many processes including kinetochore assembly, sister chromatid cohesion, spindle attachment and chromosome movement. Here we show that CID, the Drosophila homologue of the CENP-A centromere-specific H3-like proteins, colocalizes with molecular-genetically defined functional centromeres in minichromosomes. Injection of CID antibodies into early embryos, as well as RNA interference in tissue-culture cells, showed that CID is required for several mitotic processes. Deconvolution fluorescence microscopy showed that CID chromatin is physically separate from proteins involved in sister cohesion (MEI-S332), centric condensation (PROD), kinetochore function (ROD, ZW10 and BUB1) and heterochromatin structure (HP1). CID localization is unaffected by mutations in mei-S332, Su(var)2-5 (HP1), prod or polo. Furthermore, the localization of POLO, CENP-meta, ROD, BUB1 and MEI-S332, but not PROD or HP1, depends on the presence of functional CID. We conclude that the centromere and flanking heterochromatin are physically and functionally separable protein domains that are required for different inheritance functions, and that CID is required for normal kinetochore formation and function, as well as cell-cycle progression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CID is localized to the inner kinetochore and the functional centromere.
Figure 2: Affinity-purified chicken anti-CID binds centromeres at all stages of the cell cycle in vivo, and induces several mitotic and cell-cycle defects.
Figure 3: CID RNAi results in several mitotic phenotypes in tissue culture cells.
Figure 4: The centromere region comprises several, spatially separable domains.
Figure 5: CID localization is unaffected by mutations in other centromere components and proteins involved in heterochromatin structure.
Figure 6: CID disruption results in mislocalization of transient kinetochore components and a sister cohesion protein.
Figure 7: CID RNAi results in mislocalization of many transient kinetochore components and a sister cohesion protein.
Figure 8: Structural and functional relationships within the Drosophila centromere region.

Similar content being viewed by others

References

  1. Dobie, K. W., Hari, K. L., Maggert, K. A. & Karpen, G. H. Centromere proteins and chromosome inheritance: a complex affair. Curr. Opin. Genet. Dev. 9, 206–217 (1999).

    Article  CAS  Google Scholar 

  2. Palmer, D. K., O'Day, K., Trong, H. L., Charbonneau, H. & Margolis, R. L. Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proc. Natl Acad. Sci. USA 88, 3734–3738 (1991).

    Article  CAS  Google Scholar 

  3. Meluh, P. B., Yang, P., Glowczewski, L., Koshland, D. & Smith, M. M. Cse4p is a component of the core centromere of Saccharomyces cerevisiae. Cell 94, 607–613 (1998).

    Article  CAS  Google Scholar 

  4. Takahashi, K., Chen, E. S. & Yanagida, M. Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science 288, 2215–2219 (2000).

    Article  CAS  Google Scholar 

  5. Buchwitz, B. J., Ahmad, K., Moore, L. L., Roth, M. B. & Henikoff, S. A histone-H3-like protein in C. elegans. Nature 401, 547–548 (1999).

    Article  CAS  Google Scholar 

  6. Henikoff, S., Ahmad, K., Platero, J. S. & van Steensel, B. Heterochromatic deposition of centromeric histone H3-like proteins. Proc. Natl Acad. Sci. USA 97, 716–721 (2000).

    Article  CAS  Google Scholar 

  7. Warburton, P. E. et al. Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr. Biol. 7, 901–904 (1997).

    Article  CAS  Google Scholar 

  8. Howman, E. V. et al. Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc. Natl Acad. Sci. USA 97, 1148–1153 (2000).

    Article  CAS  Google Scholar 

  9. Karpen, G. H. & Allshire, R. C. The case for epigenetic effects on centromere identity and function. Trends Genet. 13, 489–496 (1997).

    Article  CAS  Google Scholar 

  10. Torok, T., Harvie, P. D., Buratovich, M. & Bryant, P. J. The product of proliferation disrupter is concentrated at centromeres and required for mitotic chromosome condensation and cell proliferation in Drosophila. Genes Dev. 11, 213–225 (1997).

    Article  CAS  Google Scholar 

  11. Kerrebrock, A. W., Moore, D. P., Wu, J. S. & Orr-Weaver, T. L. Mei-S332, a Drosophila protein required for sister-chromatid cohesion, can localize to meiotic centromere regions. Cell 83, 247–256 (1995).

    Article  CAS  Google Scholar 

  12. Sunkel, C. E. & Glover, D. M. polo, a mitotic mutant of Drosophila displaying abnormal spindle poles. J. Cell Sci. 89, 25–38 (1988).

    Google Scholar 

  13. Fanti, L., Giovinazzo, G., Berloco, M. & Pimpinelli, S. The heterochromatin protein 1 prevents telomere fusions in Drosophila. Mol. Cell 2, 527–538 (1998).

    Article  CAS  Google Scholar 

  14. Basu, J. et al. Mutations in the essential spindle checkpoint gene bub1 cause chromosome missegregation and fail to block apoptosis in Drosophila. J. Cell Biol. 146, 13–28 (1999).

    CAS  Google Scholar 

  15. Williams, B. C., Murphy, T. D., Goldberg, M. L. & Karpen, G. H. Neocentromere activity of structurally acentric mini-chromosomes in Drosophila. Nature Genet. 18, 30–37 (1998).

    Article  CAS  Google Scholar 

  16. Scaerou, F. et al. The rough deal protein is a new kinetochore component required for accurate chromosome segregation in Drosophila. J. Cell Sci. 112, 3757–3768 (1999).

    CAS  Google Scholar 

  17. Wordeman, L., Steuer, E. R., Sheetz, M. P. & Mitchison, T. Chemical subdomains within the kinetochore domain of isolated CHO mitotic chromosomes. J. Cell Biol. 114, 285–294 (1991).

    Article  CAS  Google Scholar 

  18. Cooke, C. A., Schaar, B., Yen, T. J. & Earnshaw, W. C. Localization of CENP-E in the fibrous corona and outer plate of mammalian kinetochores from prometaphase through anaphase. Chromosoma 106, 446–455 (1997).

    Article  CAS  Google Scholar 

  19. Jablonski, S. A., Chan, G. K., Cooke, C. A., Earnshaw, W. C. & Yen, T. J. The hBUB1 and hBUBR1 kinases sequentially assemble onto kinetochores during prophase with hBUBR1 concentrating at the kinetochore plates in mitosis. Chromosoma 107, 386–396 (1998).

    Article  CAS  Google Scholar 

  20. Starr, D. A., Williams, B. C., Hays, T. S. & Goldberg, M. L. ZW10 helps recruit dynactin and dynein to the kinetochore. J. Cell Biol. 142, 763–774 (1998).

    Article  CAS  Google Scholar 

  21. Murphy, T. D. & Karpen, G. H. Localization of centromere function in a Drosophila minichromosome. Cell 82, 599–609 (1995).

    Article  CAS  Google Scholar 

  22. Sun, X., Wahlstrom, J. & Karpen, G. Molecular structure of a functional Drosophila centromere. Cell 91, 1007–1019 (1997).

    Article  CAS  Google Scholar 

  23. Clarkson, M. & Saint, R. A His2AvDGFP fusion gene complements a lethal His2AvD mutant allele and provides an in vivo marker for Drosophila chromosome behavior. DNA Cell Biol. 18, 457–462 (1999).

    Article  CAS  Google Scholar 

  24. LeBlanc, H. N., Tang, T. T., Wu, J. S. & Orr-Weaver, T. L. The mitotic centromeric protein MEI-S332 and its role in sister- chromatid cohesion. Chromosoma 108, 401–411 (1999).

    Article  CAS  Google Scholar 

  25. Lopez, J., Karpen, G. & Orr-Weaver, T. Sister-chromatid cohesion via MEI-S332 and kinetochore assembly are separable functions of the Drosophila centromere. Curr. Biol. 10, 997–1000 (2000).

    Article  CAS  Google Scholar 

  26. Platero, J. S., Csink, A. K., Quintanilla, A. & Henikoff, S. Changes in chromosomal localization of heterochromatin-binding proteins during the cell cycle in Drosophila. J. Cell Biol. 140, 1297–1306 (1998).

    Article  CAS  Google Scholar 

  27. Kellum, R. & Alberts, B. M. Heterochromatin protein 1 is required for correct chromosome segregation in Drosophila embryos. J. Cell Sci. 108, 1419–1431 (1995).

    CAS  Google Scholar 

  28. Saffery, R. et al. Human centromeres and neocentromeres show identical distribution patterns of >20 functionally important kinetochore-associated proteins. Hum. Mol. Genet. 9, 175–185 (2000).

    Article  CAS  Google Scholar 

  29. Ekwall, K. et al. The chromodomain protein Swi6: a key component at fission yeast centromeres. Science 269, 1429–1431 (1995).

    Article  CAS  Google Scholar 

  30. Yucel, J. K. et al. CENP-meta, an essential kinetochore kinesin required for the maintenance of metaphase chromosome alignment in Drosophila. J. Cell Biol. 150, 1–11 (2000).

    Article  CAS  Google Scholar 

  31. Figueroa, J., Saffrich, R., Ansorge, W. & Valdivia, M. Microinjection of antibodies to centromere protein CENP-A arrests cells in interphase but does not prevent mitosis. Chromosoma 107, 397–405 (1998).

    Article  CAS  Google Scholar 

  32. Zinkowski, R. P., Meyne, J. & Brinkley, B. R. The centromere–kinetochore complex: a repeat subunit model. J. Cell Biol. 113, 1091–1110 (1991).

    Article  CAS  Google Scholar 

  33. Adams, R. R. et al. INCENP binds the aurora-related kinase AIRK2 and is required to target it to chromosomes, the central spindle and cleavage furrow. Curr. Biol. 10, 1075–1078 (2000).

    Article  CAS  Google Scholar 

  34. Karaiskou, A., Jessus, C., Brassac, T. & Ozon, R. Phosphatase 2A and polo kinase, two antagonistic regulators of cdc25 activation and MPF auto-amplification. J. Cell Sci. 112, 3747–3756. (1999).

    CAS  Google Scholar 

  35. Pluta, A. F., Cooke, C. A. & Earnshaw, W. C. Structure of the human centromere at metaphase. Trends Biochem Sci. 15, 181–185 (1990).

    Article  CAS  Google Scholar 

  36. Partridge, J. F., Borgstrom, B. & Allshire, R. C. Distinct protein interaction domains and protein spreading in a complex centromere. Genes Dev. 14, 783–791 (2000).

    CAS  Google Scholar 

  37. Hahnenberger, K. M., Carbon, J. & Clarke, L. Identification of DNA regions required for mitotic and meiotic functions within the centromere of Schizosaccharomyces pombe chromosome I. Mol. Cell Biol. 11, 2206–2215 (1991).

    Article  CAS  Google Scholar 

  38. Rieder, C. L. & Cole, R. Chromatid cohesion during mitosis: lessons from meiosis. J. Cell Sci. 112, 2607–2613 (1999).

    CAS  Google Scholar 

  39. Tanaka, T., Cosma, M. P., Wirth, K. & Nasmyth, K. Identification of cohesin association sites at centromeres and along chromosome arms. Cell 98, 847–858 (1999).

    Article  CAS  Google Scholar 

  40. Blat, Y. & Kleckner, N. Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region. Cell 98, 249–259 (1999).

    Article  CAS  Google Scholar 

  41. Dernburg, A. F., Sedat, J. W. & Hawley, R. S. Direct evidence of a role for heterochromatin in meiotic chromosome segregation. Cell 86, 135–146 (1996).

    Article  CAS  Google Scholar 

  42. Karpen, G. H., Le, M. H. & Le, H. Centric heterochromatin and the efficiency of achiasmate disjunction in Drosophila female meiosis. Science 273, 118–122 (1996).

    Article  CAS  Google Scholar 

  43. Murphy, T. D. & Karpen, G. H. Interactions between the nod+ kinesin-like gene and extracentromeric sequences are required for transmission of a Drosophila minichromosome. Cell 81, 139–148 (1995).

    Article  CAS  Google Scholar 

  44. Shelby, R. D., Monier, K. & Sullivan, K. F. Chromatin assembly at kinetochores is uncoupled from DNA replication. J. Cell Biol. 151, 1113–1118 (2000).

    Article  CAS  Google Scholar 

  45. Casso, D., Ramirez-Weber, F. A. & Kornberg, T. B. GFP-tagged balancer chromosomes for Drosophila melanogaster. Mech. Dev. 88, 229–232 (1999); erratum ibid. 91, 451–454 (2000).

    Article  CAS  Google Scholar 

  46. Sharp, D. J. et al. Functional coordination of three mitotic motors in Drosophila embryos. Mol. Biol. Cell 11, 241–253 (2000).

    Article  CAS  Google Scholar 

  47. Clemens, J. C. et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl Acad. Sci. USA 97, 6499–6503 (2000).

    Article  CAS  Google Scholar 

  48. Bonaccorsi, S., Giansanti, M. G. & Gatti, M. Spindle assembly in Drosophila neuroblasts and ganglion mother cells. Nature Cell Biol. 2, 54–56 (2000).

    Article  CAS  Google Scholar 

  49. Theurkauf, W. E. Immunofluorescence analysis of the cytoskeleton during oogenesis and early embryogenesis. Methods Cell Biol 44, 489–505 (1994).

    Article  CAS  Google Scholar 

  50. Tang, T. T. L., Bickel, S. E., Young, L. M. & Orr-Weaver, T. L. Maintenance of sister-chromatid cohesion at the centromere by the Drosophila MEI-S332 protein. Genes Dev. 12, 3843–3856 (1998).

    Article  CAS  Google Scholar 

  51. Llamazares, S. et al. polo encodes a protein kinase homolog required for mitosis in Drosophila. Genes Dev. 5, 2153–2165 (1991).

    Article  CAS  Google Scholar 

  52. Kellum, R., Raff, J. W. & Alberts, B. M. Heterochromatin protein 1 distribution during development and during the cell cycle in Drosophila embryos. J. Cell Sci. 108, 1407–1418 (1995).

    CAS  Google Scholar 

  53. Sullivan, B. A & Karpen, G. H. Centromere identity in Drosophila is not determiend in vivo by replication timing. J. Cell. Biol. (in the press).

  54. LeBlanc, H. N., Tang, T. T., Wu, J. S. & Orr-Weaver, T. L. The mitotic centromeric protein MEI-S332 and its role in sister-chromatid cohesion. Chromosoma 108, 401–411 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank K. Hari, J. Cordeiro and W. Sullivan for help with antibody injection, and K. Maggert, K. Sullivan and members of the Karpen lab for guidance and critical comments on the manuscript. We are grateful to B. Sullivan, B. Sullivan, S. Henikoff, C. Sunkel, T. Orr-Weaver, T. Torok, R. Karess and B. Williams for reagents, and M. Baker and The Salk Institute Sequencing Facility for analyses. M.B. is supported by an CMG training grant, and this project was funded by a grant from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary H. Karpen.

Supplementary information

Supplementary figure

Figure S1 Structures and transmission frequencies of minichromosome derivatives used in these studies. (PDF 26 kb)

Supplementary movie

Movie 1 Anti-CID TMR: embryo injected with tetramethyl-rhodamine labelled anti-CID. Interphase injection: the antibody does not enter the nucleus until nuclear envelope breakdown at mitosis. The antibody specifically binds centromeres during all stages of the cell cycle, and binds in a gradient with decreasing antibody bound with increasing distance from the site of injection. (MOV 749 kb)

Supplementary movie

Movie 2 Anti-CID injection: embryo injected with anti-CID show a series of phenotypes. Embryos injected in interphase show phenotypes two cycles after injection. (MOV 2823 kb)

Supplementary movie

Movie 3 Anti-CID control: embryos injected with heat-killed anti-CID show few mitotic defects. (MOV 1247 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blower, M., Karpen, G. The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nat Cell Biol 3, 730–739 (2001). https://doi.org/10.1038/35087045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35087045

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing