Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ActA and human zyxin harbour Arp2/3-independent actin-polymerization activity

Abstract

The actin cytoskeleton is a dynamic network that is composed of a variety of F-actin structures. To understand how these structures are produced, we tested the capacity of proteins to direct actin polymerization in a bead assay in vitro and in a mitochondrial-targeting assay in cells. We found that human zyxin and the related protein ActA of Listeria monocytogenes can generate new actin structures in a vasodilator-stimulated phosphoprotein-dependent (VASP) manner, but independently of the Arp2/3 complex. These results are consistent with the concept that there are multiple actin-polymerization machines in cells. With these simple tests it is possible to probe the specific function of proteins or identify novel molecules that act upon cellular actin polymerization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural features of the ActA, WASP and zyxin proteins.
Figure 2: ActA-Pro-coated beads promote actin polymerization in cell-free extracts.
Figure 3: The Arp2/3 complex is not recruited to the surface of ActA-Pro beads.
Figure 4: ActA-Pro-directed actin polymerization is independent of the Arp2/3 complex.
Figure 5: ActA-Pro reduces actin polymerization at cell-adhesion sites.
Figure 6: The proline-rich domain of zyxin mediates actin polymerization in cells.
Figure 7: Zyxin-mediated actin polymerization is independent of the Arp2/3 complex.
Figure 8: Zyxin-mediated actin polymerization is dependent on VASP.

Similar content being viewed by others

References

  1. Machesky, L. M. et al. The mammalian Arp2/3 complex localizes to regions of lamellipodial protrusion and is composed of conserved subunits. Biochem. J. 328, 105–112 (1997).

    Article  CAS  Google Scholar 

  2. Bailly, M. et al. Relationship between Arp2/3 complex and the barbed ends of actin filaments at the leading edge of carcinoma cells after epidermal growth factor stimulation. J. Cell Biol. 145, 331–345 (1999).

    Article  CAS  Google Scholar 

  3. Beckerle, M. C. Identification of a new protein localized at sites of cell-substrate adhesion. J. Cell Biol. 103, 1679–1687 (1986).

    Article  CAS  Google Scholar 

  4. Tilney, L. G. & Portnoy, D. A. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol. 109, 1597–1608 (1989).

    Article  CAS  Google Scholar 

  5. Machesky, L. M. et al. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc. Natl Acad. Sci. USA 96, 3739–3744 (1999).

    Article  CAS  Google Scholar 

  6. Rohatgi, R. et al. The interaction between N-Wasp and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231 (1999).

    Article  CAS  Google Scholar 

  7. Mullins, R. D., Heuser, J. A. & Pollard, T. D. The interaction of Arp2/3 complex with actin: Nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl Acad. Sci. 95, 6181–6186 (1998).

    Article  CAS  Google Scholar 

  8. Svitkina, T. M. & Borisy, G. C. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145, 1009–1026 (1999).

    Article  CAS  Google Scholar 

  9. Small, J. V., Herzog, M. & Anderson, K. Actin filament organization in the fish keratocyte lamellipodium. J. Cell Biol. 129, 1275–1286 (1995).

    Article  CAS  Google Scholar 

  10. Domann, E. et al. A novel bacterial virulence gene in Listeria monocytogenes required for host cell microfilament interaction with homology to the proline-rich region of vinculin. EMBO J. 11, 1981–1990 (1992).

    Article  CAS  Google Scholar 

  11. Kocks, C. et al. L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68, 521–531 (1992).

    Article  CAS  Google Scholar 

  12. Golsteyn, R. M., Beckerle, M. C., Koay, T. & Friederich, E. Structural and functional similarities between the human cytoskeletal protein zyxin and the ActA protein of Listeria monocytogenes. J. Cell Sci. 110, 1893–1906 (1997).

    CAS  Google Scholar 

  13. Crawford, A. W. & Beckerle, M. C. Purification and characterization of zyxin, an 82,000-Dalton component of adherens junctions. J. Biol. Chem. 266, 5847–5853 (1991).

    CAS  Google Scholar 

  14. Beckerle, M. C. Zyxin: zinc fingers at sites of cell adhesion. BioEssays 19, 949–957 (1997).

    Article  CAS  Google Scholar 

  15. Macalma, T. et al. Molecular characterization of human zyxin. J. Biol. Chem. 271, 31470–31478 (1996).

    Article  CAS  Google Scholar 

  16. Zumbrunn, J. & Trueb, B. A zyxin-related protein whose synthesis is reduced in virally transformed fibroblasts. Eur. J. Biochem. 241, 657–663 (1996).

    Article  CAS  Google Scholar 

  17. Petit, M. M., Mols, R., Schoenmakers, E. F., Mandahl, N. & Van De Ven, W. J. LPP, the preferred fusion partner gene of HMGIC in lipomas, is a novel member of the LIM protein gene family. Genomic 36, 118–129 (1996).

    Article  CAS  Google Scholar 

  18. Yi, J. & Beckerle, M. The human TRIP6 gene encodes a LIM domain protein and maps to chromosome 7q22, a region associated with tumorigenesis. Genomics 49, 314–316 (1998).

    Article  CAS  Google Scholar 

  19. Niebuhr, K. et al. A novel proline-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family. EMBO J. 16, 5433–5444 (1997).

    Article  CAS  Google Scholar 

  20. Drees, B. et al. Characterization of the interaction between zyxin and Ena/VASP family of proteins. J. Biol. Chem. 275, 22503–22511 (2000).

    Article  CAS  Google Scholar 

  21. Lasa, I., David, V., Gouin, E., Marchand, J. P. & Cossart, P. The amino-terminal part of ActA is critical for the actin-based motility of Listeria monocytogenes; the central proline-rich region acts as a stimulator. Mol. Microbiol. 18, 425–426 (1995).

    Article  CAS  Google Scholar 

  22. Smith, G. A., Theriot, J. A. & Portnoy, D. A. The tandem repeat domain in the Listeria monocytogenes ActA protein controls the rate of actin-based motility, the percentage of moving bacteria, and the localization of vasodilator-stimulated phosphoprotein and profilin. J. Cell Biol. 135, 647–660 (1996).

    Article  CAS  Google Scholar 

  23. Loisel, T. P., Boujemaa, R., Pantaloni, D. & Carlier, M. F. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401, 613–616 (1999).

    Article  CAS  Google Scholar 

  24. Castellano, F. et al. Inducible recruitment of Cdc42 or WASP to a cell-surface receptor triggers actin polymerization and filopodium formation. Curr. Biol. 9, 351–360 (1999).

    Article  CAS  Google Scholar 

  25. May, R. C. et al. The Arp2/3 complex is essential for the actin-based motility of Listeria monocytogenes. Curr. Biol. 9, 759–762 (1999).

    Article  CAS  Google Scholar 

  26. Reinhard, M. et al. An α-actinin binding site of zyxin is essential for subcellular zyxin localization and α-actinin recruitment. J. Biol. Chem. 274, 13410–13418 (1999).

    Article  CAS  Google Scholar 

  27. Cameron, L. A., Footer, M. J., Van Oudenaarden, A. & Theriot, J. A. Motility of ActA protein-coated microspheres driven by actin polymerization. Proc. Natl Acad. Sci. USA 96, 4908–4913 (1999).

    Article  CAS  Google Scholar 

  28. Noireaux, V. et al. Growing an actin gel on spherical surfaces. Biophys. J. 278, 1643–1654 (2000).

    Article  Google Scholar 

  29. Welch, M. D., Iwamatsu, A. & Mitchison, T. J. Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature 385, 265–269 (1997).

    Article  CAS  Google Scholar 

  30. Lasa, I. et al. Identification of two regions in the amino terminal domain of ActA involved in the actin comet tail formation by Listeria monocytogenes. EMBO J. 16, 1531–1540 (1997).

    Article  CAS  Google Scholar 

  31. van Oudenaarden, A. & Theriot, J. A. Cooperative symmetry-breaking by actin polymerization in a model for cell motility. Nature Cell Biol. 1, 493–499 (1999).

    Article  CAS  Google Scholar 

  32. Zhukarev, V., Ashton, F., Sanger, J. M., Sanger, J. W. & Shuman, H. Organization and structure of actin filament bundles in Listeria infected cells. Cell Motil. Cytoskeleton 30, 229–246 (1995).

    Article  CAS  Google Scholar 

  33. Sechi, A., Wehland, J. & Small, J. V. The isolated comet tail pseudopodium of Listeria monocytogenes: a tail of two actin filament populations, long and axial and short and random. J. Cell Biol. 137, 155–167 (1997).

    Article  CAS  Google Scholar 

  34. Blanchoin, L. et al. Direct observation of dendretic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins. Nature 404, 1007–1111 (2000).

    Article  CAS  Google Scholar 

  35. Beckerle, M. C. Spatial control of actin filament assembly: Lessons from Listeria. Cell 95, 741–748 (1998).

    Article  CAS  Google Scholar 

  36. Drees, B., Andrews, K. M. & Beckerle, M. C. Molecular dissection of zyxin function reveals its involvement in cell motility. J. Cell Biol. 147, 1549–1560 (1999).

    Article  CAS  Google Scholar 

  37. Laurent, V. et al. Role of proteins of the Ena-VASP family in actin-based motility of Listeria monocytogenes. J. Cell Biol. 144, 1245–1258 (1999).

    Article  CAS  Google Scholar 

  38. Carlsson, L., Nyström, L.-E., Sundkvist, I., Markey, F. & Lindberg, U. Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells. J. Mol. Biol. 115, 465–483 (1977).

    Article  CAS  Google Scholar 

  39. Reinhard, M. et al. The proline-rich focal adhesion and microfilament protein VASP is a ligand for profilins. EMBO J. 14, 1583–1589 (1995).

    Article  CAS  Google Scholar 

  40. Machesky, L. M., Atkinson, S. J., Ampe, C., Vandekerckhove, J. & Pollard, T. D. Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin agarose. J. Cell Biol. 127, 107–115 (1994).

    Article  CAS  Google Scholar 

  41. Higgs, H. N. & Pollard, T. D. Regulation of actin polymerization by Arp2/3 complex and WASp/Scar proteins. J. Biol. Chem. 274, 32531–32534 (1999).

    Article  CAS  Google Scholar 

  42. Fradelizi, J., Friederich, E., Beckerle, M. C. & Golsteyn, R. M. Quantitative measurement of proteins by western blotting with Cy5 coupled secondary antibodies. Biotechniques 26, 484–494 (1999).

    CAS  Google Scholar 

  43. Laurent, V. & Carlier, M.-F. in Cell Biology: A laboratory manual (ed Celis, J.) 359–365 (Academic Press, Toronto, 1998).

    Google Scholar 

  44. Kreis, T. E., Geiger, B. & Schlessinger, J. Mobility of microinjected rhodamine actin within living chicken gizzard cells determined by fluorescence photobleaching recovery. Cell 29, 835–845 (1982).

    Article  CAS  Google Scholar 

  45. Friederich, E. et al. Targeting of Listeria monocytogenes ActA protein to the plasma membrane as a tool to dissect both actin-based cell morphogenesis and ActA function. EMBO J. 14, 2731–2744 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Cabanié for technical support and members of the Louvard laboratory and M. Beckerle for valuable discussions. We also thank P. Chavrier, P. Cossart, E. Gouin, L. Hoffman, C. Koehler and L. Machesky for generously providing reagents. This work was supported by a Curie Fellowship (to R.M.G. and J.P.), a MENRT fellowship (to J.F. and V.N.), and grants from the Association pour la Recherche sur le Cancer and the Centre National de la Recherche Scientifique (France).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roy M. Golsteyn or Evelyne Friederich.

Supplementary information

Supplementary figure

Figure S1 Effect of cytochalasin D on the ATPase activity of actin during polymerization. (PDF 26 kb)

Figure S2 Inhibition of actin polymerization on the surface of WA or ActA-Pro-beads by increasing concentrations of latrunculin.

Figure S3 Quantification of fluorescence associated with WA or ActA-Pro beads immunostained for VASP or Arp3 in the absence of latrunculin A.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fradelizi, J., Noireaux, V., Plastino, J. et al. ActA and human zyxin harbour Arp2/3-independent actin-polymerization activity. Nat Cell Biol 3, 699–707 (2001). https://doi.org/10.1038/35087009

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35087009

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing