SV2 modulates the size of the readily releasable pool of secretory vesicles


The exocytosis of neurotransmitters is regulated by calcium and is plastic — features that suggest specialized regulation of the basic membrane trafficking process. Here we show that Synaptic Vesicle Protein 2 (SV2), a protein specific to neurons and endocrine cells, is required to maintain a pool of vesicles available for calcium-stimulated exocytosis. Direct measures of exocytosis in adrenal chromaffin cells showed that the calcium-induced exocytotic burst, which operationally defines the readily releasable pool of vesicles, was significantly reduced in mice lacking SV2A. Burst kinetics were normal in cells from SV2A knockout animals, however, indicating that SV2 functions before the final events of fusion. Analyses of SDS-resistant SNARE (soluble NSF (N-ethylmaleimide-sensitive fusion) attachment protein receptor) complexes in brain tissue showed that loss of SV2A was associated with fewer SDS-resistant complexes. Our observations indicate that SV2 may modulate the formation of protein complexes required for fusion and therefore the progression of vesicles to a fusion-competent state.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: SV2C expression increases in the adrenal medulla of SV2A knockout mice.
Figure 2: Exocytosis is reduced in chromaffin cells from SV2A knockout mice.
Figure 3: Granule number and size are normal in chromaffin cells from SV2A knockout mice.
Figure 4: The calcium dependence of release is not altered in chromaffin cells from SV2A knockout mice.
Figure 5: Resting calcium concentrations and calcium decay rates were not altered in chromaffin cells from SV2 knockout mice.
Figure 6: Both fast and slow components of the exocytotic burst are present in SV2A knockout cells.
Figure 7: The proportion of SDS-resistant SNARE complexes is reduced in SV2A knockout brains.


  1. 1

    Bajjalieh, S. M. Synaptic vesicle docking and fusion. Curr. Opin. Neurobiol. 9, 321–328 (1999).

  2. 2

    Jahn, R. & Sudhof, T. C. Membrane fusion and exocytosis. Annu. Rev. Biochem. 68, 863–911 (1999).

  3. 3

    Buckley, K. & Kelly, R. B. Identification of a transmembrane glycoprotein specific for secretory vesicles of neural and endocrine cells. J. Cell Biol. 100, 1284–1294 (1985).

  4. 4

    Bajjalieh, S. M., Peterson, K., Shinghal, R. & Scheller, R. H. SV2, a brain synaptic vesicle protein homologous to bacterial transporters. Science 257, 1271–1273 (1992).

  5. 5

    Feany, M. B., Lee, S., Edwards, R. H. & Buckley, K. M. The synaptic vesicle protein SV2 is a novel type of transmembrane transporter. Cell 70, 861–867 (1992).

  6. 6

    Bajjalieh, S. M., Peterson, K., Linial, M. & Scheller, R. H. Brain contains two forms of synaptic vesicle protein 2. Proc. Natl Acad. Sci. USA 90, 2150–2154 (1993).

  7. 7

    Janz, R., Hofmann, K. & Sudhof, T. C. SVOP, an evolutionarily conserved synaptic vesicle protein, suggests novel transport functions of synaptic vesicles. J. Neurosci. 15, 9269–9281 (1998).

  8. 8

    Crowder, K. M. et al. Abnormal neurotransmission in mice lacking synaptic vesicle protein 2A (SV2A). Proc. Natl Acad. Sci. USA 96, 115268–15273 (1999).

  9. 9

    Janz, R., Goda, Y., Geppert, M., Missler, M. & Sudhof, T. C. SV2A and SV2B function as redundant Ca2+ regulators in neurotransmitter release. Neuron 24, 1003–1016 (1999).

  10. 10

    Xu, T. et al. Inhibition of SNARE complex assembly differentially affects kinetic components of exocytosis. Cell 99, 713–722 (1999).

  11. 11

    Neher, E. & Marty, A. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc. Natl Acad. Sci. USA 79, 6712–6716 (1982).

  12. 12

    Neher, E. & Zucker, R. S. Multiple calcium-dependent processes related to secretion in bovine chromaffin cells. Neuron 10, 21–30 (1993).

  13. 13

    Thomas, P., Wong, J. G., Lee, A. K. & Almers, W. A low affinity calcium receptor controls the final steps in peptide secretion from pituitary melanotrophs. Neuron 11, 93–104 (1993).

  14. 14

    Xu, T., Binz, T., Neimann, H. & Neher, E. Multiple kinetic components of exocytosis distinguished by neurotoxin sensitivity. Nature Neurosci. 1, 192–200 (1998).

  15. 15

    Smith, C., Moser, T., Xu, T. & Neher, E. Cytosolic calcium acts by two separate pathways to modulate the supply of release-competent vesicles in chromaffin cells. Neuron 20, 1243–1253 (1998).

  16. 16

    Weber, T. et al. SNAREpins: Minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

  17. 17

    Broadie, K. et al. Syntaxin and synaptobrevin function downstream of vesicle docking in drosophila. Neuron 15, 663–673 (1995).

  18. 18

    Poirier, M. A. et al. The synaptic SNARE complex is a parallel four-stranded bundle. Nature Struct. Biol. 5, 765–769 (1998).

  19. 19

    Sutton, R. B., Fasshauer, D., Jahn, R. & Brunger, A. T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 ? resolution. Nature 395, 347–353 (1998).

  20. 20

    Hayashi, T., Yamasaki, S., Nauenburg, S., Binz, T. & Neimann, H. Disassembly of the reconstituted synaptic vesicle membrane fusion complex in vitro. EMBO J. 14, 2317–2325 (1995).

  21. 21

    Otto, H., Hanson, P. I. & Jahn, R. Assembly and disassembly of a ternary complex of synaptobrevin, syntaxin and SNAP-25 in the membane of synaptic vesicles. Proc. Natl Acad. Sci. USA 94, 6197–6201 (1997).

  22. 22

    Pevsner, J., Hsu, S.-C. & Scheller, R. n-Sec1: A neural-specific syntaxin-binding protein. Proc. Natl Acad. Sci. USA 91, 1445–1449 (1994).

  23. 23

    Garcia, E. P., Gatti, E., Butler, M., Burton, J. & De Camilli, P. A rat brain Sec1 homolog related to Rop and UNC18 interacts with syntaxin. Proc. Natl Acad. Sci. USA 91, 2003–2007 (1994).

  24. 24

    Hsu, S.-C. et al. Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments. Neuron 20, 1111–1122 (1998).

  25. 25

    Ishizuka, T., Saisu, H., Odani, S. & Abe, T. Synaphin: a protein associated with the docking/fusion complex in presynaptic terminals. Biochem. Biophys. Res. Comm. 213, 1107–1114 (1995).

  26. 26

    McMahon, H. T., Missler, M., Li, C. & Sudhof, T. C. Complexins: cytosolic proteins that regulate SNAP receptor function. Cell 83, 111–119 (1995).

  27. 27

    Sheng, Z.-H., Rettig, J., Takahashi, M. & Catterall, W. A. Identification of a syntaxin-binding site on N-type calcium channels. Neuron 13, 1303–1313 (1994).

  28. 28

    Lao, G. et al. Syntaphilin: A syntaxin-1 clamp that controls SNARE assembly. Neuron 25, 191–201 (2000).

  29. 29

    Littleton, J. T. et al. Temperature-sensitive paralytic mutations demonstrate that synaptic exocytosis requires SNARE complex assembly and disassembly. Neuron 21, 401–413 (1998).

  30. 30

    DiAntonio, A. & Schwarz, T. L. The effect on synaptic physiology of synaptotagmin mutatioins in Drosophila. Neuron 12, 909–920 (1994).

  31. 31

    Littleton, J. T., Stern, M., Perin, M. & Bellen, H. J. Calcium dependence of neurotransmitter release and rate of spontaneous vesicle fusion are altered in Drosophila synaptotagmin mutants. Proc. Natl Acad. Sci. USA 91, 10888–10892 (1994).

  32. 32

    Geppert, M. et al. Synaptotagmin I: A major calcium sensor for transmitter release at a central synapse. Cell 79, 717–727 (1994).

  33. 33

    Janz, R. & Sudhof, T. C. SV2C is a synaptic vesicle protein with an unusually restricted localization: Anatomy of a synaptic vesicle protein family. Neuroscience 94, 1279–1290 (1999).

  34. 34

    Dobrunz, L. E. & Stevens, C. F. Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron 18, 995–1008 (1997).

  35. 35

    Lonart, G. & Sudhof, T. C. Assembly of SNARE complexes prior to neurotransmitter release sets the readily releasable pool of synaptic vesicles. J. Biol. Chem. 275, 27703–27707 (2000).

  36. 36

    Tokumaru, H. et al. SNARE complex oligomerization by synaphin/complexin is essential for synaptic vesicle exocytosis. Cell 104, 421–432 (2001).

  37. 37

    Linial, M. Vesicular transporters join the major facilitator superfamily (MFS). Trends Biochem. Sci. 18, 248–249 (1993).

  38. 38

    Peters, C. & Mayer, A. Calcium/calmodulin signals the completion of docking and triggers a late step of vacuole fusion. Nature 396, 575–580 (1998).

  39. 39

    Stewart, B. A., Mohtashami, M., Trimble, W. S. & Boulianne, G. L. SNARE proteins contribute to calcium cooperativity of synaptic transmission. Proc. Natl Acad. Sci. USA 97, 13955–13960 (2000).

  40. 40

    Schivell, A. E., Batchelor, R. H. & Bajjalieh, S. M. Isoform-specific, calcium-regulated interaction of the synaptic vesicle proteins SV2 and synaptotagmin. J. Biol. Chem. 271, 27770–27775 (1996).

  41. 41

    Li, C. et al. Ca2+-dependent and -independent activities of neural and non-neural synaptotagmins. Nature 375, 594–599 (1995).

  42. 42

    Gerona, R. R. L., Larsen, E. C., Kowalchyk, J. A. & Martin, T. F. J. The C terminus of SNAP25 is essential for calcium-dependent binding of synaptotagmin to SNARE complexes. J. Biol. Chem. 275, 6328–6336 (2000).

  43. 43

    Chapman, E. R., An, S., Edwardson, J. M. & Jahn, R. A novel function for the second C2 domain of synaptotagmin: Ca2+-triggered dimerization. J. Biol. Chem. 271, 5844–5849 (1996).

  44. 44

    Sugita, S., Hata, Y. & Sudhof, T. C. Distinct Ca2+-dependent properties of the first and second C2-domains of synaptotagmin I. J. Biol. Chem. 271, 1262–1265 (1996).

  45. 45

    Littleton, J. T. et al. synaptotagmin mutants reveal essential functions for the C2B domain in calcium-triggered fusion and recycling of synaptic vesicles. J. Neurosci. 21, 1421–1433 (2001).

  46. 46

    Lee, C.-K., Klopp, R. G., Weindruch, R. & Prolla, T. A. Gene expression profile of aging and its retardation by caloric restriction. Science 285, 1390–1393 (1999).

  47. 47

    Pyle, R. A., Schivell, A. E., Hidaka, H. & Bajjalieh, S. M. Phosphorylation of synaptic vesicle protein 2 modulates binding to synaptotagmin. J. Biol. Chem. 275, 17195–17200 (2000).

  48. 48

    Park, Y. B. Ion selectivity and gating of small conductance calcium-activated potassium channels in cultured rat adrenal chromaffin cells. J. Physiol. (Lond.) 481, 555–570 (1994).

  49. 49

    Xu, T., Naraghi, M., Kang, H. & Neher, E. Kinetic studies of calcium binding and calcium clearance in the cytosol of adrenal chromaffin cells. Biophys. J. 73, 532–545 (1997).

  50. 50

    Ellis-Davies, G. C. & Kaplan, J. H. Nitrophenyl-EGTA, a photolabile chelator that selectively binds calcium with high affinity and releases it rapidly upon photolysis. Proc. Natl Acad. Sci. USA 91, 187–191 (1994).

  51. 51

    Grynkiewiez, G., Poenie, M. & Tsien, R. A new generation of calcium indicators with greatly imporved fluorescence properties. J. Biol. Chem. 260, 3440–3450 (1985).

  52. 52

    Gillis, K. D. in Single Channel Recording (eds Sakmann, B. & Neher, E.) (Plenum, New York, 1995).

  53. 53

    Bajjalieh, S. M., Franz, G., Weimann, J. M., McConnell, S. K. & Scheller, R. H. Differential expression of synaptic vesicle protein 2 (SV2) isoforms. J. Neurosci. 14, 5223–5235 (1994).

Download references


We thank B. Hille for his gracious and generous support of this work. We also thank L. Baldwin for maintaining the mouse colony and genotyping animals; R. Janz for anti-SV2C antibody; R. Scheller for anti-n-sec1 antibody; Z. Sheng for anti-syntaphilin antibody; L. Pallanck, N. Stella and W. Catterall for reading the manuscript; D. Babcock for help with figures; P. Hanson for helpful discussions; and R. Collman of the University of Washington Department of Pathology for sample processing and photography for morphometric analysis. This work was supported by grants from the NIMH (to S.M.B.) and NIH (to B. Hille) and a grant from the Whitehall Foundation (to S.M.B).

Author information

Correspondence to Sandra M. Bajjalieh.

Rights and permissions

Reprints and Permissions

About this article

Further reading