Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SV2 modulates the size of the readily releasable pool of secretory vesicles

Abstract

The exocytosis of neurotransmitters is regulated by calcium and is plastic — features that suggest specialized regulation of the basic membrane trafficking process. Here we show that Synaptic Vesicle Protein 2 (SV2), a protein specific to neurons and endocrine cells, is required to maintain a pool of vesicles available for calcium-stimulated exocytosis. Direct measures of exocytosis in adrenal chromaffin cells showed that the calcium-induced exocytotic burst, which operationally defines the readily releasable pool of vesicles, was significantly reduced in mice lacking SV2A. Burst kinetics were normal in cells from SV2A knockout animals, however, indicating that SV2 functions before the final events of fusion. Analyses of SDS-resistant SNARE (soluble NSF (N-ethylmaleimide-sensitive fusion) attachment protein receptor) complexes in brain tissue showed that loss of SV2A was associated with fewer SDS-resistant complexes. Our observations indicate that SV2 may modulate the formation of protein complexes required for fusion and therefore the progression of vesicles to a fusion-competent state.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SV2C expression increases in the adrenal medulla of SV2A knockout mice.
Figure 2: Exocytosis is reduced in chromaffin cells from SV2A knockout mice.
Figure 3: Granule number and size are normal in chromaffin cells from SV2A knockout mice.
Figure 4: The calcium dependence of release is not altered in chromaffin cells from SV2A knockout mice.
Figure 5: Resting calcium concentrations and calcium decay rates were not altered in chromaffin cells from SV2 knockout mice.
Figure 6: Both fast and slow components of the exocytotic burst are present in SV2A knockout cells.
Figure 7: The proportion of SDS-resistant SNARE complexes is reduced in SV2A knockout brains.

Similar content being viewed by others

References

  1. Bajjalieh, S. M. Synaptic vesicle docking and fusion. Curr. Opin. Neurobiol. 9, 321–328 (1999).

    Article  CAS  Google Scholar 

  2. Jahn, R. & Sudhof, T. C. Membrane fusion and exocytosis. Annu. Rev. Biochem. 68, 863–911 (1999).

    Article  CAS  Google Scholar 

  3. Buckley, K. & Kelly, R. B. Identification of a transmembrane glycoprotein specific for secretory vesicles of neural and endocrine cells. J. Cell Biol. 100, 1284–1294 (1985).

    Article  CAS  Google Scholar 

  4. Bajjalieh, S. M., Peterson, K., Shinghal, R. & Scheller, R. H. SV2, a brain synaptic vesicle protein homologous to bacterial transporters. Science 257, 1271–1273 (1992).

    Article  CAS  Google Scholar 

  5. Feany, M. B., Lee, S., Edwards, R. H. & Buckley, K. M. The synaptic vesicle protein SV2 is a novel type of transmembrane transporter. Cell 70, 861–867 (1992).

    Article  CAS  Google Scholar 

  6. Bajjalieh, S. M., Peterson, K., Linial, M. & Scheller, R. H. Brain contains two forms of synaptic vesicle protein 2. Proc. Natl Acad. Sci. USA 90, 2150–2154 (1993).

    Article  CAS  Google Scholar 

  7. Janz, R., Hofmann, K. & Sudhof, T. C. SVOP, an evolutionarily conserved synaptic vesicle protein, suggests novel transport functions of synaptic vesicles. J. Neurosci. 15, 9269–9281 (1998).

    Article  Google Scholar 

  8. Crowder, K. M. et al. Abnormal neurotransmission in mice lacking synaptic vesicle protein 2A (SV2A). Proc. Natl Acad. Sci. USA 96, 115268–15273 (1999).

    Google Scholar 

  9. Janz, R., Goda, Y., Geppert, M., Missler, M. & Sudhof, T. C. SV2A and SV2B function as redundant Ca2+ regulators in neurotransmitter release. Neuron 24, 1003–1016 (1999).

    Article  CAS  Google Scholar 

  10. Xu, T. et al. Inhibition of SNARE complex assembly differentially affects kinetic components of exocytosis. Cell 99, 713–722 (1999).

    Article  CAS  Google Scholar 

  11. Neher, E. & Marty, A. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc. Natl Acad. Sci. USA 79, 6712–6716 (1982).

    Article  CAS  Google Scholar 

  12. Neher, E. & Zucker, R. S. Multiple calcium-dependent processes related to secretion in bovine chromaffin cells. Neuron 10, 21–30 (1993).

    Article  CAS  Google Scholar 

  13. Thomas, P., Wong, J. G., Lee, A. K. & Almers, W. A low affinity calcium receptor controls the final steps in peptide secretion from pituitary melanotrophs. Neuron 11, 93–104 (1993).

    Article  CAS  Google Scholar 

  14. Xu, T., Binz, T., Neimann, H. & Neher, E. Multiple kinetic components of exocytosis distinguished by neurotoxin sensitivity. Nature Neurosci. 1, 192–200 (1998).

    Article  CAS  Google Scholar 

  15. Smith, C., Moser, T., Xu, T. & Neher, E. Cytosolic calcium acts by two separate pathways to modulate the supply of release-competent vesicles in chromaffin cells. Neuron 20, 1243–1253 (1998).

    Article  CAS  Google Scholar 

  16. Weber, T. et al. SNAREpins: Minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    Article  CAS  Google Scholar 

  17. Broadie, K. et al. Syntaxin and synaptobrevin function downstream of vesicle docking in drosophila. Neuron 15, 663–673 (1995).

    Article  CAS  Google Scholar 

  18. Poirier, M. A. et al. The synaptic SNARE complex is a parallel four-stranded bundle. Nature Struct. Biol. 5, 765–769 (1998).

    Article  CAS  Google Scholar 

  19. Sutton, R. B., Fasshauer, D., Jahn, R. & Brunger, A. T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 ? resolution. Nature 395, 347–353 (1998).

    Article  CAS  Google Scholar 

  20. Hayashi, T., Yamasaki, S., Nauenburg, S., Binz, T. & Neimann, H. Disassembly of the reconstituted synaptic vesicle membrane fusion complex in vitro. EMBO J. 14, 2317–2325 (1995).

    Article  CAS  Google Scholar 

  21. Otto, H., Hanson, P. I. & Jahn, R. Assembly and disassembly of a ternary complex of synaptobrevin, syntaxin and SNAP-25 in the membane of synaptic vesicles. Proc. Natl Acad. Sci. USA 94, 6197–6201 (1997).

    Article  CAS  Google Scholar 

  22. Pevsner, J., Hsu, S.-C. & Scheller, R. n-Sec1: A neural-specific syntaxin-binding protein. Proc. Natl Acad. Sci. USA 91, 1445–1449 (1994).

    Article  CAS  Google Scholar 

  23. Garcia, E. P., Gatti, E., Butler, M., Burton, J. & De Camilli, P. A rat brain Sec1 homolog related to Rop and UNC18 interacts with syntaxin. Proc. Natl Acad. Sci. USA 91, 2003–2007 (1994).

    Article  CAS  Google Scholar 

  24. Hsu, S.-C. et al. Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments. Neuron 20, 1111–1122 (1998).

    Article  CAS  Google Scholar 

  25. Ishizuka, T., Saisu, H., Odani, S. & Abe, T. Synaphin: a protein associated with the docking/fusion complex in presynaptic terminals. Biochem. Biophys. Res. Comm. 213, 1107–1114 (1995).

    Article  CAS  Google Scholar 

  26. McMahon, H. T., Missler, M., Li, C. & Sudhof, T. C. Complexins: cytosolic proteins that regulate SNAP receptor function. Cell 83, 111–119 (1995).

    Article  CAS  Google Scholar 

  27. Sheng, Z.-H., Rettig, J., Takahashi, M. & Catterall, W. A. Identification of a syntaxin-binding site on N-type calcium channels. Neuron 13, 1303–1313 (1994).

    Article  CAS  Google Scholar 

  28. Lao, G. et al. Syntaphilin: A syntaxin-1 clamp that controls SNARE assembly. Neuron 25, 191–201 (2000).

    Article  CAS  Google Scholar 

  29. Littleton, J. T. et al. Temperature-sensitive paralytic mutations demonstrate that synaptic exocytosis requires SNARE complex assembly and disassembly. Neuron 21, 401–413 (1998).

    Article  CAS  Google Scholar 

  30. DiAntonio, A. & Schwarz, T. L. The effect on synaptic physiology of synaptotagmin mutatioins in Drosophila. Neuron 12, 909–920 (1994).

    Article  CAS  Google Scholar 

  31. Littleton, J. T., Stern, M., Perin, M. & Bellen, H. J. Calcium dependence of neurotransmitter release and rate of spontaneous vesicle fusion are altered in Drosophila synaptotagmin mutants. Proc. Natl Acad. Sci. USA 91, 10888–10892 (1994).

    Article  CAS  Google Scholar 

  32. Geppert, M. et al. Synaptotagmin I: A major calcium sensor for transmitter release at a central synapse. Cell 79, 717–727 (1994).

    Article  CAS  Google Scholar 

  33. Janz, R. & Sudhof, T. C. SV2C is a synaptic vesicle protein with an unusually restricted localization: Anatomy of a synaptic vesicle protein family. Neuroscience 94, 1279–1290 (1999).

    Article  CAS  Google Scholar 

  34. Dobrunz, L. E. & Stevens, C. F. Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron 18, 995–1008 (1997).

    Article  CAS  Google Scholar 

  35. Lonart, G. & Sudhof, T. C. Assembly of SNARE complexes prior to neurotransmitter release sets the readily releasable pool of synaptic vesicles. J. Biol. Chem. 275, 27703–27707 (2000).

    CAS  Google Scholar 

  36. Tokumaru, H. et al. SNARE complex oligomerization by synaphin/complexin is essential for synaptic vesicle exocytosis. Cell 104, 421–432 (2001).

    Article  CAS  Google Scholar 

  37. Linial, M. Vesicular transporters join the major facilitator superfamily (MFS). Trends Biochem. Sci. 18, 248–249 (1993).

    Article  CAS  Google Scholar 

  38. Peters, C. & Mayer, A. Calcium/calmodulin signals the completion of docking and triggers a late step of vacuole fusion. Nature 396, 575–580 (1998).

    Article  CAS  Google Scholar 

  39. Stewart, B. A., Mohtashami, M., Trimble, W. S. & Boulianne, G. L. SNARE proteins contribute to calcium cooperativity of synaptic transmission. Proc. Natl Acad. Sci. USA 97, 13955–13960 (2000).

    Article  CAS  Google Scholar 

  40. Schivell, A. E., Batchelor, R. H. & Bajjalieh, S. M. Isoform-specific, calcium-regulated interaction of the synaptic vesicle proteins SV2 and synaptotagmin. J. Biol. Chem. 271, 27770–27775 (1996).

    Article  CAS  Google Scholar 

  41. Li, C. et al. Ca2+-dependent and -independent activities of neural and non-neural synaptotagmins. Nature 375, 594–599 (1995).

    Article  CAS  Google Scholar 

  42. Gerona, R. R. L., Larsen, E. C., Kowalchyk, J. A. & Martin, T. F. J. The C terminus of SNAP25 is essential for calcium-dependent binding of synaptotagmin to SNARE complexes. J. Biol. Chem. 275, 6328–6336 (2000).

    Article  CAS  Google Scholar 

  43. Chapman, E. R., An, S., Edwardson, J. M. & Jahn, R. A novel function for the second C2 domain of synaptotagmin: Ca2+-triggered dimerization. J. Biol. Chem. 271, 5844–5849 (1996).

    Article  CAS  Google Scholar 

  44. Sugita, S., Hata, Y. & Sudhof, T. C. Distinct Ca2+-dependent properties of the first and second C2-domains of synaptotagmin I. J. Biol. Chem. 271, 1262–1265 (1996).

    Article  CAS  Google Scholar 

  45. Littleton, J. T. et al. synaptotagmin mutants reveal essential functions for the C2B domain in calcium-triggered fusion and recycling of synaptic vesicles. J. Neurosci. 21, 1421–1433 (2001).

    Article  CAS  Google Scholar 

  46. Lee, C.-K., Klopp, R. G., Weindruch, R. & Prolla, T. A. Gene expression profile of aging and its retardation by caloric restriction. Science 285, 1390–1393 (1999).

    Article  CAS  Google Scholar 

  47. Pyle, R. A., Schivell, A. E., Hidaka, H. & Bajjalieh, S. M. Phosphorylation of synaptic vesicle protein 2 modulates binding to synaptotagmin. J. Biol. Chem. 275, 17195–17200 (2000).

    Article  CAS  Google Scholar 

  48. Park, Y. B. Ion selectivity and gating of small conductance calcium-activated potassium channels in cultured rat adrenal chromaffin cells. J. Physiol. (Lond.) 481, 555–570 (1994).

    Article  CAS  Google Scholar 

  49. Xu, T., Naraghi, M., Kang, H. & Neher, E. Kinetic studies of calcium binding and calcium clearance in the cytosol of adrenal chromaffin cells. Biophys. J. 73, 532–545 (1997).

    Article  CAS  Google Scholar 

  50. Ellis-Davies, G. C. & Kaplan, J. H. Nitrophenyl-EGTA, a photolabile chelator that selectively binds calcium with high affinity and releases it rapidly upon photolysis. Proc. Natl Acad. Sci. USA 91, 187–191 (1994).

    Article  CAS  Google Scholar 

  51. Grynkiewiez, G., Poenie, M. & Tsien, R. A new generation of calcium indicators with greatly imporved fluorescence properties. J. Biol. Chem. 260, 3440–3450 (1985).

    Google Scholar 

  52. Gillis, K. D. in Single Channel Recording (eds Sakmann, B. & Neher, E.) (Plenum, New York, 1995).

    Google Scholar 

  53. Bajjalieh, S. M., Franz, G., Weimann, J. M., McConnell, S. K. & Scheller, R. H. Differential expression of synaptic vesicle protein 2 (SV2) isoforms. J. Neurosci. 14, 5223–5235 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Hille for his gracious and generous support of this work. We also thank L. Baldwin for maintaining the mouse colony and genotyping animals; R. Janz for anti-SV2C antibody; R. Scheller for anti-n-sec1 antibody; Z. Sheng for anti-syntaphilin antibody; L. Pallanck, N. Stella and W. Catterall for reading the manuscript; D. Babcock for help with figures; P. Hanson for helpful discussions; and R. Collman of the University of Washington Department of Pathology for sample processing and photography for morphometric analysis. This work was supported by grants from the NIMH (to S.M.B.) and NIH (to B. Hille) and a grant from the Whitehall Foundation (to S.M.B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra M. Bajjalieh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, T., Bajjalieh, S. SV2 modulates the size of the readily releasable pool of secretory vesicles. Nat Cell Biol 3, 691–698 (2001). https://doi.org/10.1038/35087000

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35087000

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing