Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

The nuclear import function of Smad2 is masked by SARA and unmasked by TGFb-dependent phosphorylation

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The MH2 domain mediates nuclear import of Smad2 by a distinct mechanism.
Figure 2: Full-length Smad2 is imported into the nucleus without phosphorylation of its SSMS motif.
Figure 3: SARA interaction prevents nuclear import of Smad2, and phosphorylation relieves Smad2 from SARA, allowing its entry into the nucleus.

References

  1. Massagué, J. Annu. Rev. Biochem. 67, 753–791 (1998).

  2. Liu, F., Pouponnot, C. & Massagué, J. Genes Dev. 11, 3157–3167 (1997).

    Article  CAS  Google Scholar 

  3. Rexach, M. & Blobel, G. Cell 83, 683–692 (1995).

    Article  CAS  Google Scholar 

  4. Mattaj, I. W. & Englmeier, L. Annu. Rev. Biochem. 67, 265–306 (1998).

    Article  CAS  Google Scholar 

  5. Nakielny, S. & Dreyfuss, G. Cell 99, 677–690 (1999).

    Article  CAS  Google Scholar 

  6. Tsukazaki, T., Chiang, T. A., Davison, A. F., Attisano, L. & Wrana, J. L. Cell 95, 779–791 (1998).

    Article  CAS  Google Scholar 

  7. Adam, S. A., Marr, R. S. & Gerace, L. J. Cell Biol. 111, 807–816 (1990).

    Article  CAS  Google Scholar 

  8. Adam, S. A., Sterne-Marr, R. & Gerace, L. Methods Enzymol. 219, 97–110 (1992).

    Article  CAS  Google Scholar 

  9. Massagué, J. & Chen, Y. G. Genes Dev. 14, 627–644 (2000).

    PubMed  Google Scholar 

  10. Pollard, V. W. et al. Cell 86, 985–994 (1996).

    Article  CAS  Google Scholar 

  11. Baker, J. & Harland, R. M. Genes Dev. 10, 1880–1889 (1996).

    Article  CAS  Google Scholar 

  12. Shi, Y. et al. Cell 94, 585–594 (1998).

    Article  CAS  Google Scholar 

  13. Conti, E., Uy, M., Leighton, L., Blobel, G. & Kuriyan, J. Cell 94, 193–204 (1998).

    Article  CAS  Google Scholar 

  14. Gorlich, D., Henklein, P., Laskey, R. A. & Hartmann, E. EMBO J. 15, 1810–1817 (1996).

    Article  CAS  Google Scholar 

  15. Macias-Silva, M. et al. Cell 87, 1215–1224 (1996).

    Article  CAS  Google Scholar 

  16. Kretzschmar, M., Liu, F., Hata, A., Doody, J. & Massagué, J. Genes Dev. 11, 984–995 (1997).

    Article  CAS  Google Scholar 

  17. Wu, G. et al. Science 287, 92–97 (2000).

    Article  CAS  Google Scholar 

  18. Dong, C., Li, Z., Alvarez, R., Feng, X-H. & Goldschmidt-Clermont, P. J. Mol. Cell 5, 27–34 (2000).

    Article  CAS  Google Scholar 

  19. Kretzschmar, M., Doody, J., Timokhina, I. & Massagué, J. Genes Dev. 13, 804–816 (1999).

    Article  CAS  Google Scholar 

  20. Wieser, R., Wrana, J. L. & Massagué, J. EMBO J. 14, 2199–2208 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Blobel and B. Gumbiner for suggestions on nuclear import analysis, D. Görlich for plasmids encoding IBB and importin-β, J. Wrana for expression plasmids for GST–SBD and Myc–SARA, Y-G. Shi for Smad2-encoding baculovirus, and E-K. Suh and B. Gumbiner for NLS–HA and for technical advice concerning the nuclear-import assay. This work was supported by NIH grant CA34610. L.X. is supported by a Damon Runyon-Walter Winchell Fellowship (DRG–1540) of the Cancer Research Fund, and J.M. is an Investigator of the Howard Hughes Medical Institute.

Correspondence and requests for materials should be addressed to J.M. Supplementary Information is available on Nature Cell Biology’s World-Wide Web site (http://www.nature.com/ncb) or as paper copy from the London editorial office of Nature Cell Biology.

Author information

Authors and Affiliations

Authors

Supplementary information

Figure 1

TGFβ induced nuclear accumulation of Smad2/3 in HeLa cells. (PDF 310 kb)

Figure 2 Left panel. Coomassie Blue staining of purified full length Smad2.

Figure 3 Fusion of GFP to the N-terminus of MH2 domain disrupts its interaction with SARA.

Figure 4 Preparation of phosphorylated Smad2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, L., Chen, YG. & Massagué, J. The nuclear import function of Smad2 is masked by SARA and unmasked by TGFb-dependent phosphorylation. Nat Cell Biol 2, 559–562 (2000). https://doi.org/10.1038/35019649

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35019649

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing