Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Negative regulation of the Apaf-1 apoptosome by Hsp70

Abstract

Release of cytochrome c from mitochondria by apoptotic signals induces ATP/dATP-dependent formation of the oligomeric Apaf-1–caspase-9 apoptosome. Here we show that the documented anti-apoptotic effect of the principal heat-shock protein, Hsp70, is mediated through its direct association with the caspase-recruitment domain (CARD) of Apaf-1 and through inhibition of apoptosome formation. The interaction between Hsp70 and Apaf-1 prevents oligomerization of Apaf-1 and association of Apaf-1 with procaspase-9. On the basis of these results, we propose that resistance to apoptosis exhibited by stressed cells and some tumours, which constitutively express high levels of Hsp70, may be due in part to modulation of Apaf-1 function by Hsp70.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inducible Hsp70 associates with Apaf-1.
Figure 2: Hsp70 prevents processing of procaspase-9 in an ATP-dependent manner.
Figure 3: Overexpression of Hsp70 inhibits cytochrome c/ATP-mediated activation of caspase-3 and apoptosis.
Figure 4: Hsp70 inhibits formation of the Apaf-1 apoptosome in cell-free extracts.
Figure 5: Hsp70 inhibits oligomerization of Apaf-1L and Apaf-1–procaspase-9 interaction.
Figure 6: Hsp70 associates with the CARD of monomeric Apaf-1 and modulates the CARD–CARD interaction between Apaf-1 and procaspase-9.

Similar content being viewed by others

References

  1. Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide- ranging implications in tissue kinetics. Br. J. Cancer 4, 239–257 (1972).

    Article  Google Scholar 

  2. Vaux, D. L., Haecker, G. & Strasser, A. An evolutionary perspective on apoptosis. Cell 76, 777–779 (1994).

    Article  CAS  Google Scholar 

  3. Steller, H. Mechanisms and genes of cellular suicide. Science 267, 1445–1449 (1995).

    Article  CAS  Google Scholar 

  4. Alnemri, E. S. Mammalian cell death proteases: a family of highly conserved aspartate specific cysteine proteases. J. Cell Biochem. 64, 33–42 (1997).

    Article  CAS  Google Scholar 

  5. Cohen, G. M. Caspases: the executioners of apoptosis. Biochem. J. 326, 1–16 (1997).

    Article  CAS  Google Scholar 

  6. Salvesen, G. S. & Dixit, V. M. Caspases: intracellular signaling by proteolysis. Cell 14, 443–446 (1997).

    Article  Google Scholar 

  7. Cryns, V. & Yuan, J. Proteases to die for. Genes Dev. 12, 1551–1570 (1998).

    Article  CAS  Google Scholar 

  8. Thornberry, N. A. & Lazebnik, Y. Caspases: enemies within. Science 281, 1312–1316 (1998).

    Article  CAS  Google Scholar 

  9. Fernandes-Alnemri, T. et al. In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains. Proc. Natl Acad. Sci. USA 93, 7464–7469 (1996).

    Article  CAS  Google Scholar 

  10. Stennicke, H. R. et al. Pro-caspase-3 is a major physiologic target of caspase-8. J. Biol. Chem. 273, 27084–27090 (1998).

    Article  CAS  Google Scholar 

  11. Green, D. R. & Reed, J. C. Mitochondria and apoptosis. Science 281, 1309–1312 (1998).

    Article  CAS  Google Scholar 

  12. Goldstein, J. C., Waterhouse, N. J., Juin, P., Evan, G. I. & Green, D. R. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nature Cell Biol. 2, 156–162 (2000).

  13. Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 (1997).

    Article  CAS  Google Scholar 

  14. Srinivasula, S. M., Ahmad, M., Fernandes-Alnemri, T. & Alnemri, E. S. Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol. Cell 1, 949–957 (1998).

    Article  CAS  Google Scholar 

  15. Saleh, A., Srinivasula, S. M., Acharya, S., Fishel, R. & Alnemri, E. S. Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J.Biol.Chem. 274, 17941–17945 (1999).

    Article  CAS  Google Scholar 

  16. Qin, H. et al. Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1. Nature 399, 549–557 (1999).

    Article  CAS  Google Scholar 

  17. Zou, H., Li, Y., Liu, X. & Wang, X. An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem. 274, 11549–11556 (1999).

    Article  CAS  Google Scholar 

  18. Cain, K., Brown, D. G., Langlais, C. & Cohen, G. M. Caspase activation involves the formation of the aposome, a large (approximately 700 kDa) caspase-activating complex. J. Biol. Chem. 274, 22686–22692 (1999).

    Article  CAS  Google Scholar 

  19. Li, G. C., Mivechi, N. F. & Weitzel, G. Heat shock proteins, thermotolerance, and their relevance to clinical hyperthermia. Int. J. Hyperthermia 11, 459–488 (1995).

    Article  CAS  Google Scholar 

  20. Jaattela, M., Wissing, D., Bauer, P. A. & Li, G. C. Major heat shock protein hsp70 protects tumor cells from tumor necrosis factor cytotoxicity. EMBO J. 11, 3507–3512 (1992).

    Article  CAS  Google Scholar 

  21. Jaattela, M. & Wissing, D. Heat-shock proteins protect cells from monocyte cytotoxicity: possible mechanism of self-protection. J. Exp. Med. 177, 231–236 (1993).

    Article  CAS  Google Scholar 

  22. Mosser, D. D., Caron, A. W., Bourget, L., Denis-Larose, C. & Massie, B. Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol. Cell Biol. 17, 5317–5327 (1997).

    Article  CAS  Google Scholar 

  23. Jaattela, M., Wissing, D., Kokholm, K., Kallunki, T. & Egeblad, M. Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J. 17, 6124–6134 (1998).

    Article  CAS  Google Scholar 

  24. Hermawan, A. & Chirico, W. J. N-Ethylmaleimide-modified Hsp70 inhibits protein folding. Arch. Biochem. Biophys. 369, 157–162 (1999).

    Google Scholar 

  25. Yin, X. M. et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400, 886–891 (1999).

    Article  CAS  Google Scholar 

  26. Schmid, D., Baici, A., Gehring, H. & Christen, P. Kinetics of molecular chaperone action. Science 263, 971–973 (1994).

    Article  CAS  Google Scholar 

  27. Li, G. C., Li, L., Liu, R. Y., Rehman, M. & Lee, W. M. F. Heat shock protein hsp70 protects cells from thermal stress even after deletion of its ATP-binding domain. Proc. Natl Acad. Sci. USA 89, 2036–2040 (1992).

    Article  CAS  Google Scholar 

  28. Buzzard, K. A., Giaccia, A. J., Killender, M. & Anderson, R. L. Heat shock protein 72 modulates pathways of stress-induced apoptosis. J. Biol. Chem. 273, 17147–17153 (1998).

    Article  CAS  Google Scholar 

  29. Wissing, D., Mouritzen, H., Egeblad, M., Poirier, G. G. & Jaattela, M. Involvement of caspase-dependent activation of cytosolic phospholipase A2 in tumor necrosis factor-induced apoptosis. Proc. Natl Acad. Sci. USA 94, 5073–5077 (1997).

    Article  CAS  Google Scholar 

  30. Wong, H. R., Menendez, I. Y., Ryan, M. A. & Denenberg, A. G. Increased expression of heat shock protein-70 protects A549 cells against hyperoxia. Am. J. Physiol. 275, L836–L841 (1998).

    Article  CAS  Google Scholar 

  31. Polla, B. S. et al. Mitochondria are selective targets for the protective effects of heat shock against oxidative injury. Proc. Natl Acad. Sci. USA 93, 6458–6463 (1996).

    Article  CAS  Google Scholar 

  32. Ciocca, D. R. et al. Heat shock protein hsp70 in patients with axillary lymph node-negative breast cancer: prognostic implications. J. Natl Cancer Inst. 85, 570–574 (1993).

    Article  CAS  Google Scholar 

  33. Jaattela, M. Escaping cell death: survival proteins in cancer. Exp. Cell. Res. 248, 30–43 (1999).

    Article  CAS  Google Scholar 

  34. Dunning, A. M. et al. A systematic review of genetic polymorphisms and breast cancer risk. Cancer Epidemiol. Biomarkers Prev. 8, 843–854 (1999).

    CAS  PubMed  Google Scholar 

  35. Wei, Y. Q., Zhao, X., Kariya, Y., Teshigawara, K. & Uchida A. Inhibition of proliferation and induction of apoptosis by abrogation of heat-shock protein (HSP) 70 expression in tumor cells. Cancer Immunol. Immunother. 40, 73–78 (1995).

    Article  CAS  Google Scholar 

  36. Robertson, J. D., Datta, K., Biswal, S. S. & Kehrer, J. P. Heat-shock protein 70 antisense oligomers enhance proteasome inhibitor-induced apoptosis. Biochem. J. 344, 477–485 (1999).

    Article  CAS  Google Scholar 

  37. Kaur, J., Kaur, J. & Ralhan, R. Induction of apoptosis by abrogation of HSP70 expression in human oral cancer cells. Int. J. Cancer 85, 1–5 (2000).

    Article  CAS  Google Scholar 

  38. Creagh, E. M. & Cotter, T. G. Selective protection by HSP70 against cytotoxic drug-, but not Fas-induced T-cell apoptosis. Immunology 97, 36–44.

Download references

Acknowledgements

We thank the members of Robbins’ laboratory, especially M. Serrano, B. Baldwin, T. Kenniston and J. Mai, for technical support. We also thank Y. Lazebnik and S. H. Kaufmann for Apaf-1 and caspase-9 antibodies, respectively, and R. Morimoto for hsp70 cDNA. This work was supported by NIH grants AG14357 and AG13487 (to E.S.A.) and CA55227 (to P.D.R.).

Correspondence and requests for materials should be addressed to E.S.A.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saleh, A., Srinivasula, S., Balkir, L. et al. Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2, 476–483 (2000). https://doi.org/10.1038/35019510

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35019510

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing