Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Haem oxygenase-1 prevents cell death by regulating cellular iron

Abstract

Haem oxygenase-1 (HO1) is a heat-shock protein that is induced by stressful stimuli. Here we demonstrate a cytoprotective role for HO1: cell death produced by serum deprivation, staurosporine or etoposide is markedly accentuated in cells from mice with a targeted deletion of the HO1 gene, and greatly reduced in cells that overexpress HO1. Iron efflux from cells is augmented by HO1 transfection and reduced in HO1-deficient fibroblasts. Iron accumulation in HO1-deficient cells explains their death: iron chelators protect HO1-deficient fibroblasts from cell death. Thus, cytoprotection by HO1 is attributable to its augmentation of iron efflux, reflecting a role for HO1 in modulating intracellular iron levels and regulating cell viability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Increased apoptosis in HO1-/- fibroblasts following serum deprivation.
Figure 2: Transfection of HO1 into HEK-293 cells protects against serum-deprivation-induced apoptosis.
Figure 3: HO1 transfection regulates 55Fe uptake and release in HEK-293 cells.
Figure 4: Genetic deletion of HO1 regulates 55Fe uptake and release in primary fibroblasts.
Figure 5: Iron chelation, but not incubation with cGMP or bilirubin, blocks serum-deprivation-induced apoptosis in HO1-/- fibroblasts.

Similar content being viewed by others

References

  1. Lindquist, S. & Craig, E. A. The heat-shock proteins. Annu. Rev. Genet. 22, 631–677 (1988).

    Article  CAS  Google Scholar 

  2. Lindquist, S. The heat-shock response. Annu. Rev. Biochem. 55, 1151–1191 (1986).

    Article  CAS  Google Scholar 

  3. Hartl, F. U. Molecular chaperones in cellular protein folding. Nature 381, 571–579 (1996).

    Article  CAS  Google Scholar 

  4. Bukau, B. & Horwich, A. L. The Hsp70 and Hsp60 chaperone machines. Cell 92, 351–366 (1998).

    Article  CAS  Google Scholar 

  5. Wu, C. Heat shock transcription factors: structure and regulation. Annu. Rev. Cell Dev. Biol. 11, 441–469 (1995).

    Article  CAS  Google Scholar 

  6. Camhi, S. L., Alam, J., Otterbein, L., Sylvester, S. L. & Choi, A. M. Induction of heme oxygenase-1 gene expression by lipopolysaccharide is mediated by AP-1 activation. Am. J. Resp. Cell Mol. Biol. 13, 387–398 (1995).

    Article  CAS  Google Scholar 

  7. Choi, A. M. & Alam, J. Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. Am. J. Resp. Cell Mol. Biol. 15, 9–19 (1996).

    Article  CAS  Google Scholar 

  8. Levinson, W., Oppermann, H. & Jackson, J. Transition series metals and sulfhydryl reagents induce the synthesis of four proteins in eukaryotic cells. Biochim. Biophys. Acta 606, 170–180 (1980).

    Article  CAS  Google Scholar 

  9. Keyse, S. M. & Tyrrell, R. M. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc. Natl Acad. Sci. USA 86, 99–103 (1989).

    Article  CAS  Google Scholar 

  10. Maines, M. D. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J. 2, 2557–2568 (1988).

    Article  CAS  Google Scholar 

  11. Maines, M. D. The heme oxygenase system: a regulator of second messenger gases. Annu. Rev. Pharmacol. Toxicol. 37, 517–554 (1997).

    Article  CAS  Google Scholar 

  12. Yoshinaga, T., Sassa, S. & Kappas, A. The occurrence of molecular interactions among NADPH-cytochrome c reductase, heme oxygenase, and biliverdin reductase in heme degradation. J. Biol. Chem. 257, 7786–7793 (1982).

    CAS  PubMed  Google Scholar 

  13. Farinelli, S. E., Greene, L. A. & Friedman, W. J. Neuroprotective actions of dipyridamole on cultured CNS neurons. J. Neurosci. 18, 5112–5123 (1998).

    Article  CAS  Google Scholar 

  14. Kroemer, G., Dallaporta, B. & Resche-Rigon, M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 60, 619–642 (1998).

    Article  CAS  Google Scholar 

  15. Green, D. R. & Reed, J. C. Mitochondria and apoptosis. Science 281, 1309–1312 (1998).

    Article  CAS  Google Scholar 

  16. Ankarcrona, M. et al. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15, 961–973 (1995).

    Article  CAS  Google Scholar 

  17. Trakshel, G. M., Kutty, R. K. & Maines, M. D. Cadmium-mediated inhibition of testicular heme oxygenase activity: the role of NADPH-cytochrome c (P-450) reductase. Arch. Biochem. Biophys. 251, 175–187 (1986).

    Article  CAS  Google Scholar 

  18. Poss, K. D. & Tonegawa, S. Heme oxygenase 1 is required for mammalian iron reutilization. Proc. Natl Acad. Sci. USA 94, 10919–10924 (1997).

    Article  CAS  Google Scholar 

  19. Mukhopadhyay, C. K., Mazumder, B., Lindley, P. F. & Fox, P. L. Identification of the prooxidant site of human ceruloplasmin: a model for oxidative damage by copper bound to protein surfaces. Proc. Natl Acad. Sci. USA 94, 11546–11551 (1997).

    Article  CAS  Google Scholar 

  20. Ponka, P., Beaumont, C. & Richardson, D. R. Function and regulation of transferrin and ferritin. Semin. Hematol. 35, 35–54 (1998).

    CAS  PubMed  Google Scholar 

  21. Eisenstein, R. S., Garcia-Mayol, D., Pettingell, W. & Munro, H. N. Regulation of ferritin and heme oxygenase synthesis in rat fibroblasts by different forms of iron. Proc. Natl Acad. Sci. USA 88, 688–692 (1991).

    Article  CAS  Google Scholar 

  22. Zakhary, R. et al. Heme oxygenase 2: endothelial and neuronal localization and role in endothelium-dependent relaxation. Proc. Natl Acad. Sci. USA 93, 795–798 (1996).

    Article  CAS  Google Scholar 

  23. McCord, J. M. Iron, free radicals, and oxidative injury. Semin. Hematol. 35, 5–12 (1998).

    CAS  PubMed  Google Scholar 

  24. Meneghini, R. Iron homeostasis, oxidative stress, and DNA damage. Free Rad. Biol. Med. 23, 783–792 (1997).

    Article  CAS  Google Scholar 

  25. Gunshin, H. et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388, 482–488 (1997).

    Article  CAS  Google Scholar 

  26. Umbreit, J. N., Conrad, M. E., Moore, E. G. & Latour, L. F. Iron absorption and cellular transport: the mobilferrin/paraferritin paradigm. Semin. Hematol. 35, 13–26 (1998).

    CAS  PubMed  Google Scholar 

  27. Stearman, R., Yuan, D. S., Yamaguchi-Iwai, Y., Klausner, R. D. & Dancis, A. A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science 271, 1552–1557 (1996).

    Article  CAS  Google Scholar 

  28. Conrad, M. E. Introduction: iron overloading disorders and iron regulation. Semin. Hematol. 35, 1–4 (1998).

    CAS  PubMed  Google Scholar 

  29. Bothwell, T. H., Charlton, R.W. & Motulsky, A.G. in The Metabolic and Molecular Basis of Inherited Disease (eds Scriver, C. R., Beaudet, A.L., Sly, W.S. & Valle, D.) 2237–2269 (McGraw-Hill, New York, 1995).

    Google Scholar 

  30. Tenhunen, R., Marver, H. S. & Schmid, R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc. Natl Acad. Sci. USA 61, 748–755 (1968).

    Article  CAS  Google Scholar 

  31. Tenhunen, R., Marver, H. S. & Schmid, R. The enzymatic conversion of hemoglobin to bilirubin. Trans. Assoc. Am. Physicians 82, 363–371 (1969).

    CAS  PubMed  Google Scholar 

  32. Barañano, D . et al. Identification and characterization of an iron transporting ATPase. Gastroenterol. 116, A1188 (1999).

    Google Scholar 

  33. Soares, M. P. et al. Expression of heme oxygenase-1 can determine cardiac xenograft survival. Nature Med. 4, 1073–1077 (1998).

    Article  CAS  Google Scholar 

  34. Verma, A., Hirsch, D. J., Glatt, C. E., Ronnett, G. V. & Snyder, S. H. Carbon monoxide: a putative neural messenger. Science 259, 381–384 (1993).

    Article  CAS  Google Scholar 

  35. Zakhary, R. et al. Targeted gene deletion of heme oxygenase 2 reveals neural role for carbon monoxide. Proc. Natl Acad. Sci. USA 94, 14848–14853 (1997).

    Article  CAS  Google Scholar 

  36. Miller, S. M. et al. Heme oxygenase 2 is present in interstitial cell networks of the mouse small intestine. Gastroenterol. 114, 239–244 (1998).

    Article  CAS  Google Scholar 

  37. Dennery, P. A. et al. Oxygen toxicity and iron accumulation in the lungs of mice lacking heme oxygenase-2. J. Clin. Invest. 101, 1001–1011 (1998).

    Article  CAS  Google Scholar 

  38. McCoubrey, W. K. Jr, Huang, T. J. & Maines, M. D. Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur. J. Biochem. 247, 725–732 (1997).

    Article  CAS  Google Scholar 

  39. Bredt, D. S., Ferris, C. D. & Snyder, S. H. Nitric oxide synthase regulatory sites. Phosphorylation by cyclic AMP-dependent protein kinase, protein kinase C, and calcium/calmodulin protein kinase; identification of flavin and calmodulin binding sites. J. Biol. Chem. 267, 10976–10981 (1992).

    CAS  PubMed  Google Scholar 

  40. Hockenbery, D., Nunez, G., Milliman, C., Schreiber, R. D. & Korsmeyer, S. J. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348, 334–336 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Seaforth for providing [55Fe]haemin, D. C. Dodson for secretarial assistance, and S. Tonegawa for initial supplies of HO1−/− mice. This work was supported by USPHS grant MH-18501 and Research Scientist Award DA-00074 to S.H.S., and a National Research Service Award (DA-05900) to D.E.B. C.D.F. has a Howard Hughes Fellowship for Physicians and H.W. is a Pew Fellow.

Correspondence and requests for materials should be addressed to S.H.S. or C.D.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solomon H. Snyder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferris, C., Jaffrey, S., Sawa, A. et al. Haem oxygenase-1 prevents cell death by regulating cellular iron. Nat Cell Biol 1, 152–157 (1999). https://doi.org/10.1038/11072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/11072

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing