Powerful ideas driven by simple tools: lessons from experimental embryology

Abstract

In developmental biology, as in all scientific fields, conceptual advances are tightly coupled to technological innovation. In this review, we trace the evolution of techniques in experimental embryology, from classical ablation to the latest methods utilizing in vivo electroporation, with lens induction as a linking theme.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Lens induction.

References

  1. 1

    Saha, M. in A Conceptual History of Modern Embryology (ed. Gilbert, S. F.) 91–108 (Plenum Press, New York, 1991).

  2. 2

    Hamburger, V. The Heritage of Experimental Embryology: Hans Spemann and the Organizer (eds Burian, R., Burkhardt, R. J., Lewontin, R. & Smith, J. R.) (Oxford University Press, Oxford, 1988).

  3. 3

    Roux, W. Virchows Arch. pathol. Anat. Physiol. Klin. Med. 114, 113–153 (1888).

  4. 4

    Spemann, H. Anatomische Anzeiger 15, 16–79 (1901).

  5. 5

    Kimble, J. Dev. Biol. 87, 286–300 (1981).

  6. 6

    Thomas, J. H., Stern, M. J. & Horvitz, H. R. Cell 62, 1041–1052 (1990).

  7. 7

    Lewis, W. H. Am. J. Anat. 3, 505–536 (1904).

  8. 8

    Saha, M. S., Spann, C. L. & Grainger, R. M. Cell Differ. Dev 28, 153–171 (1989).

  9. 9

    Grainger, R. M., Herry, J. J. & Henderson, R. A. Development 102, 517–526 (1988).

  10. 10

    Spemann, H. Verhandl. deutsche zool. Gesell. 18, 101–110 (1908).

  11. 11

    Le Douarin, N. Dev. Biol. 30, 217–222 (1973).

  12. 12

    Gray, G. E., Glover, J. C., Majors, J. & Sanes, J. R. Proc. Natl Acad. Sci. USA 85, 7356–7360 (1988).

  13. 13

    Cepko, C. L. et al. Methods Enzymol. 327, 118–145 (2000).

  14. 14

    Zambrowicz, B. P. et al. Proc. Natl Acad. Sci. USA 94, 3789–3794 (1997).

  15. 15

    Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. & Nishimune, Y. FEBS Lett. 407, 313–319 (1997).

  16. 16

    Honig, M. G. & Hume, R. I. J. Cell Biol. 103, 171–187 (1986).

  17. 17

    Bronner-Fraser, M. & Fraser, S. E. Nature 335, 161–164 (1988).

  18. 18

    Vincent, J. P. & O'Farrell, P. H. Cell 68, 923–931 (1992).

  19. 19

    Kozlowski, D. J. & Weinberg, E. S. Methods Mol. Biol. 135, 349–355 (2000).

  20. 20

    Furuta, Y. & Hogan, B. L. Genes Dev. 12, 3764–3775 (1998).

  21. 21

    Eichele, G., Tickle, C. & Alberts, B. M. Anal. Biochem. 142, 542–555 (1984).

  22. 22

    Kennedy, T. E., Serafini, T., de la Torre, J. R. & Tessier-Lavigne, M. Cell 78, 425–435 (1994).

  23. 23

    Morgan, B. A. & Fekete, D. M. Methods Cell Biol. 51, 185–218 (1996).

  24. 24

    Nordling, S., Miettinen, H., Wartiovaara, J. & Saxen, L. J. Embryol. Exp. Morphol. 26, 231–252 (1971).

  25. 25

    Toivonen, S., Tarin, D., Saxen, L., Tarin, P. J. & Wartiovaara, J. Differentiation 4, 1–7 (1975).

  26. 26

    Swartz, M., Eberhart, J., Mastick, G. S. & Krull, C. E. Dev. Biol. 233, 13–21 (2001).

  27. 27

    Momose, T. et al. Dev. Growth Differ. 41, 335–344 (1999).

  28. 28

    Pu, H. F. & Young, A. P. Gene 89, 259–263 (1990).

  29. 29

    Ogino, H. & Yasuda, K. Science 280, 115–118 (1998).

  30. 30

    Itasaki, N., Bel-Vialar, S. & Krumlauf, R. Nature Cell Biol. 1, E203–E207 (1999).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading