Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Yeast Eps15-like endocytic protein, Pan1p, activates the Arp2/3 complex

Abstract

Longstanding evidence supports a role for actin in endocytosis; an intact actin cytoskeleton is required for endocytosis in yeast, and drugs that inhibit actin polymerization inhibit endocytosis in both yeast and mammalian cells. The yeast Arp2/3 complex is required for the internalization step of endocytosis. In addition, some early endocytic events in mammalian cells are associated with the formation of actin tails similar to those generated by activated Arp2/3 complex. However, until now no Arp2/3 complex activator has been identified among proteins known to mediate early steps in endocytosis. Here we show that the yeast endocytic protein Pan1p binds to and activates the Arp2/3 complex. Genetic interactions between PAN1 and mutants of Arp2/3 subunits, or of the Arp2/3 activator LAS17, provide evidence for this activity in vivo. We suggest that Pan1p forms the core of an endocytic complex and physically couples actin polymerization nucleated by the Arp2/3 complex to the endocytic machinery, thus providing the forces necessary for endocytosis.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: In vivo effect of deletion of Pan1p residues 896–1480.
Figure 2: Identification of alleles of PAN1 that interact with las17-16 and arp2-1.
Figure 3: Purified Pan1p binds to the Arp2/3 complex in vitro.
Figure 4: Purified Pan1p activates the Arp2/3 complex.
Figure 5: Model showing how Pan1p might link rapid actin polymerization to endocytic events.

References

  1. Winter, D., Lechler, T. & Li, R. Curr. Biol. 9, 501–504 (1999).

    CAS  Article  Google Scholar 

  2. Li, R. J. Cell. Biol. 136, 649–658 (1997).

    CAS  Article  Google Scholar 

  3. Moreau, V., Madania, A., Martin, R. P. & Winsor, B. J. Cell Biol. 134, 117–132 (1996).

    CAS  Article  Google Scholar 

  4. Moreau, V., Galan, J.-M., Devilliers, G., Haguenauer-Tsapis, R. & Winsor, B. Mol. Biol. Cell 8, 1361–1375 (1997).

    CAS  Article  Google Scholar 

  5. Wendland, B., McCaffery, J. M., Xiao, Q. & Emr, S. D. J. Cell Biol. 135, 1485–1500 (1996).

    CAS  Article  Google Scholar 

  6. Tang, H.-Y., Xu, J. & Cai, M. Mol. Cell. Biol. 20, 12–25 (2000).

    CAS  Article  Google Scholar 

  7. Wendland, B. & Emr, S. D. J. Cell Biol. 141, 71–84 (1998).

    CAS  Article  Google Scholar 

  8. Wendland, B., Steece, K. E. & Emr, S. D. EMBO J. 18, 4383–4393 (1999).

    CAS  Article  Google Scholar 

  9. Geli, M. I. & Riezman, H. J. Cell Sci. 111, 1031–1037 (1998).

    CAS  PubMed  Google Scholar 

  10. Lechler, T., Shevchenko, A., Shevchenko, A. & Li, R. J. Cell Biol. 148, 363–373 (2000).

    CAS  Article  Google Scholar 

  11. Geli, M. I. & Riezman, H. Science 272, 533–535 (1996).

    CAS  Article  Google Scholar 

  12. Madania, A., Dumoulin, P., Grava, S., Kitamoto, H., Scharer-Brodbeck, C. et al. Mol. Biol. Cell 10, 3521–3538 (1999).

    CAS  Article  Google Scholar 

  13. Lee, W.-L., Bezanilla, M. & Pollard, T. D. J. Cell Biol. 151, 789–799 (2000).

    CAS  Article  Google Scholar 

  14. Evangelista, M., Klebl, B. M., Tong, A. H. Y., Webb, B. A., Leeuw, T. et al. J. Cell Biol. 148, 353–362 (2000).

    CAS  Article  Google Scholar 

  15. Winter, D. C., Choe, E. Y. & Li, R. Proc. Natl Acad. Sci. USA 96, 7288–7293 (1999).

    CAS  Article  Google Scholar 

  16. Machesky, L. M., Mullins, R. D., Higgs, H. N., Kaiser, D. A., Blanchoin, L. et al. Proc. Natl Acad. Sci. USA 96, 3739–3744 (1999).

    CAS  Article  Google Scholar 

  17. Skoble, J., Portnoy, D. A. & Welch, M. D. J. Cell Biol. 150, 527–537 (2000).

    CAS  Article  Google Scholar 

  18. Marchand, J. B., Kaiser, D. A., Pollard, T. D. & Higgs, H. N. Nature Cell Biol. 3, 76–82 (2001).

    CAS  Article  Google Scholar 

  19. Wendland, B., Emr, S. D. & Riezman, H. Curr. Opin. Cell Biol. 10, 513–522 (1998).

    CAS  Article  Google Scholar 

  20. Hao, W., Tan, Z., Prasad, K., Reddy, K. K., Chen, J. et al. J. Biol. Chem. 272, 6393–6398 (1997).

    CAS  Article  Google Scholar 

  21. Itoh, T., Koshiba, S., Kigawa, T., Kikuchi, A., Yokoyama, S. et al. Science 291, 1047–1051 (2001).

    CAS  Article  Google Scholar 

  22. Benedetti, H., Raths, S., Crausaz, F. & Riezman, H. Mol. Biol. Cell 5, 1023–1037 (1994).

    CAS  Article  Google Scholar 

  23. Tebar, F., Sorkina, T., Sorkin, A., Ericsson, M. & Kirchhausen, T. J. Biol. Chem. 271, 28727–28730 (1996).

    CAS  Article  Google Scholar 

  24. Guthrie, C. & Fink, G. R. Guide to Yeast Genetics and Molecular Biology (Academic, San Diego, 1991).

    Google Scholar 

  25. Longtine, M. S., McKenzie, A., Demarini, D. J., Shah, N. G., Wach, A. et al. Yeast 14, 953–961 (1998).

    CAS  Article  Google Scholar 

  26. Mitchell, D. A., Marshall, T. K. & Deschenes, R. J. Yeast 9, 715–722 (1993).

    CAS  Article  Google Scholar 

  27. Sachs, A. B. & Deardorff, J. A. Cell 70, 961–73 (1992).

    CAS  Article  Google Scholar 

  28. Rodal, A. A., Tetreault, J. W., Lappalainen, P., Drubin, D. G. & Amberg, D. C. J. Cell Biol. 145, 1251–1264 (1999).

    CAS  Article  Google Scholar 

  29. Goode, B. L., Rodal, A., Barnes, G., Drubin, D. G. J. Cell Biol. 153, 627–634 (2001).

    CAS  Article  Google Scholar 

  30. Cope, M. J. T. V., Yang, S., Shang, C. & Drubin, D. G. J. Cell Biol. 144, 1203–1218 (1999).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank A. Sachs, B. Winsor, M. Cai, J. Skoble and J. Park for strains and reagents; A. Rodal for technical advice and helpful comments, M. Welch for critical reading of this manuscript; the Welch laboratory for helpful comments, advice and generously providing bench space; A. Sachs for Pan1p antibodies; and P. Crews (Univ. California, Santa Cruz) for latrunculin A. This work was supported by grants from the NIH–Institute of General Medical Sciences (D.G.D, B.W.), the Burroughs Wellcome Fund (B.W), the National Science Foundation (M.C.D.) and the Human Frontier Science Program (M.J.T.V.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Drubin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Duncan, M., Cope, M., Goode, B. et al. Yeast Eps15-like endocytic protein, Pan1p, activates the Arp2/3 complex. Nat Cell Biol 3, 687–690 (2001). https://doi.org/10.1038/35083087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35083087

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing