Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Acetylation control of the retinoblastoma tumour-suppressor protein

Abstract

The retinoblastoma tumour-suppressor protein (pRb) and p300/CBP co-activator proteins are important for control of proliferation and in tumour cells these are sequestered by viral oncoproteins such as E1A. pRb is involved in negatively regulating growth, and p300/CBP proteins have histone acetyltransferase (HAT) activity, which influences gene expression. Although it is known that phosphorylation by G1 cyclin-dependent kinases (CDKs) regulates pRb activity, the nature and role of other post-translational modifications is not understood. Here we identify acetylation as a new type of modification and level of control in pRb function. Adenovirus E1A, which binds p300/CBP through an amino-terminal transformation-sensitive domain, stimulates the acetylation of pRb by recruiting p300 and pRb into a multimeric-protein complex. Furthermore, pRb acetylation is under cell-cycle control, and acetylation hinders the phosphorylation of pRb by cyclin-dependent kinases. pRb binds more strongly when acetylated to the MDM2 oncoprotein, which indicates that acetylation may regulate protein–protein interactions in the pRb pathway. The acetylation of pRb defines a new level of cell-cycle control mediated by HAT. Furthermore, our results establish a relationship between p300, pRb and acetylation in which E1A acts to recruit and target a cellular HAT activity to pRb.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The retinoblastoma protein is modified by acetylation.
Figure 2: The C-terminal region of pRb is a main site of acetylation.
Figure 3: Adenovirus E1A increases p300-dependent acetylation of pRb.
Figure 4: Domains in E1A for p300-dependent acetylation of pRb, and acetylated pRb binds to MDM2.
Figure 5: Functional effects of pRb acetylation.
Figure 6: Regulation of pRb acetylation during cell-cycle progression and differentiation.

Similar content being viewed by others

References

  1. Weinberg, R. A. The retinoblastoma protein and cell control. Cell 81, 323–330 (1995).

    Article  CAS  Google Scholar 

  2. Dyson, N. The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–2262 (1998).

    Article  CAS  Google Scholar 

  3. Sherr, C. J. Cancer cell cycles. Science 274, 1672–1677 (1996).

    Article  CAS  Google Scholar 

  4. Shikama, N., Lyon, J. & La Thangue, N. B. The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol. 7, 230–236 (1997).

    Article  CAS  Google Scholar 

  5. Goodman, R. H. & Smolik, S. CBP/p300 in cell growth, transformation, and development. Genes Dev. 14, 1553–1577 (2000).

    CAS  PubMed  Google Scholar 

  6. Hassig, C. A. & Schrieber, S. L. Nuclear histone acetylases and deacetylases and transcriptional regulation: HATs off to HDACs. Curr. Opin. 1, 300–308 (1997).

    Article  CAS  Google Scholar 

  7. Brown, C. E., Lechner, T., Howe, L. & Workman, J. L. The many HATs of transcription co-activators. Trends Biol. Sci. 25, 15–18 (2000).

    Article  CAS  Google Scholar 

  8. Gu, W. & Roeder, R. G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595–606 (1997).

    Article  CAS  Google Scholar 

  9. Sakaguchi, K. et al. DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. 12, 2831–2841 (1998).

    Article  CAS  Google Scholar 

  10. Martinez-Balbás, M. A., Bauer, U.-M., Nielsen, S. J., Brehm, A. & Kouzarides, T. Regulation of E2F-1 activity by acetylation. EMBO J. 19, 662–271 (2000).

    Article  Google Scholar 

  11. Muraoka, M. et al. p300 gene alterations in colorectal and gastric carcinomas. Oncogene 12, 1565–1569 (1996).

    CAS  PubMed  Google Scholar 

  12. Gayther, S. A. et al. Mutations truncating the EP300 acetylase in human cancers. Nature Genet. 24, 300–303 (2000).

    Article  CAS  Google Scholar 

  13. Giles, R. H., Peters, D. J. & Bruening, M. H. Conjunction dysfunction: CBP/p300 in human disease. Trends Genet. 14, 178–183 (1998).

    Article  CAS  Google Scholar 

  14. Kung, A. L. et al. Gene dose-dependent control of hematopoiesis and hematologic tumor suppression by CBP. Genes Dev. 14, 272–277 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Dyson, N. & Harlow, E. Adenovirus E1A targets key regulators of cell proliferation. Cancer Surv. 12, 161–195 (1992).

    CAS  PubMed  Google Scholar 

  16. Stein, R. W., Corrigan, M., Yaciul, P., Whelan, J. & Moran, E. Analysis of E1A-mediated growth regulation functions: binding of the p300-kilodalton cellular product correlates with E1A enhancer repression function and DNA synthesis-inducing activity. J. Virol. 64, 4421–4427 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, H.-G. H., Moran, E. & Yacuik, P. E1A promotes association between p300 and pRB in multimeric complexes required for normal biological activity. J. Virol. 69, 7917–7924 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yao, T.-P. et al. Gene dosage-dependent embryonic development and proliferation defects in micelacking the transcriptional integrator p300. Cell 93, 361–372 (1998).

    Article  CAS  Google Scholar 

  19. Ait-Si-Ali, S. et al. CBP/p300 histone acetyltransferase activity is important for the G1/S transition. Oncogene 19, 2430–2437 (2000).

    Article  CAS  Google Scholar 

  20. Ait-Si-Ali, S. et al. Histone acetyltransferase activity of CBP is controlled by cycle-dependent kinases and oncoprotein E1A. Nature 396, 184–186 (1998).

    Article  CAS  Google Scholar 

  21. Bandara, L. R., Adamczewski, J. P., Hunt, T. & La Thangue, N. B. Cyclin A and the retinoblastoma gene product complex with a common transcription factor. Nature 352, 249–251 (1991).

    Article  CAS  Google Scholar 

  22. Yang, X.-J., Ogryzko, V. V., Nishikawa, J.-I., Howard, B. H. & Nakatani, Y. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382, 319–324 (1996).

    Article  CAS  Google Scholar 

  23. Arany, Z., Newsome, D., Oldread, E., Livingston, D. M. & Eckner, R. A family of transcriptional adaptor proteins targeted by the E1A oncoprotein. Nature 374, 81–84 (1995).

    Article  CAS  Google Scholar 

  24. Kraus, V. B., Moran, E. & Nevins, J. R. Promoter-specific trans-activation by the adenovirus E1A12S product involves separate E1A domains. Mol. Cell. Biol. 12, 4391–4399 (1992).

    Article  CAS  Google Scholar 

  25. Lassam, N. J., Bayley, S. T. & Graham, F. L. Tumor antigens of human Ad5 in transformed cells and in cells infected with transformation-defective host-range mutants. Cell 18, 781–791 (1979).

    Article  CAS  Google Scholar 

  26. Xiao, Z.-X. et al. Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature 375,964–698 (1995).

    Article  Google Scholar 

  27. Adams, P. D. et al. Identification of a cyclin-Cdk2 recognition motif present in substrates and p21-like cyclin-dependent kinase inhibitors. Mol. Cell. Biol. 16, 6623–6633 (1996).

    Article  CAS  Google Scholar 

  28. Zhang, W., Bone, J. R., Edmondson, D. G., Turner, B. M. & Roth, S. Y. Essential and redundant functions of histone acetylation revealed by mutation of target lysines and loss of the Gcn5p acetyltransferase. EMBO J. 17, 3155–3167 (1998).

    Article  CAS  Google Scholar 

  29. Zhang, Q., Yao, H., Vo, N. & Goodman, R. H. Acetylation of adenovirus E1A regulates binding of the transcriptional co-repressor CtBP. Proc. Natl Acad. Sci. USA 97, 14323–14328 (2000).

    Article  CAS  Google Scholar 

  30. Zhang, W. & Bieker, J. J. Acetylation and modulation of erythroid Krüppel-like factor (EKLF) activity by interaction with histone acetyltransferases. Proc. Natl Acad. Sci. USA 95, 9855–9860 (1998).

    Article  CAS  Google Scholar 

  31. Boyes, J., Byfield, P., Nakatani, Y. & Ogryzko, V. Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 396, 594–598 (1998).

    Article  CAS  Google Scholar 

  32. Sartorelli, V. et al. Acetylation of MyoD directed by pCAF is necessary for the execution of the muscle program. Mol Cell. 4, 725–734 (1999).

    Article  CAS  Google Scholar 

  33. Keirnan, R. et al. HIV-1 Tat transcriptional activity is regulated by acetylation. EMBO J. 18, 6106–6118 (1999).

    Article  Google Scholar 

  34. Hseih, J. K. et al. RB regulates the stability and the apoptotic function of p53 via MDM2. Mol. Cell 3, 181–193 (1999).

    Article  Google Scholar 

  35. Lee, C.-W., Sørensen, T. S., Shikama, N. & La Thangue, N. B. Functional interplay between p53 and E2F through co-activator p300. Oncogene 16, 2695–2610 (1998).

    Article  CAS  Google Scholar 

  36. Shikama, N. et al. A novel co-factor for p300 that regulates the p53 response. Mol. Cell 4, 365–376 (1999).

    Article  CAS  Google Scholar 

  37. Ogryzko, V., Schiltz, R. L., Russanova, V., Howard, B. H. & Nakatani, Y. The transcriptional co-activators p300 and CBP are histone acetyltransferases. Cell 87, 953–959 (1996).

    Article  CAS  Google Scholar 

  38. Morris, L., Allen, K. E. & La Thangue, N. B. Regulation of E2F transcription by cyclinE/Cdk2 kinase mediated through p300/CBP co-activators. Nature Cell Biol. 12, 232–239 (2000).

    Article  Google Scholar 

  39. Loughran, Ö. & La Thangue, N. B. Apoptotic and growth-promoting activity of E2F modulated by MDM2. Mol. Cell Biol. 20, 2186–2197 (2000).

    Article  CAS  Google Scholar 

  40. Shikama, N. et al. Functional interaction between nucleosome assembly proteins and p300/CREB-binding protein family co-activators. Mol. Cell Biol. 20, 8933–8943 (2000).

    Article  CAS  Google Scholar 

  41. de la Luna, S., Allen, K. E., Mason, S. L. & La Thangue, N. B. Integration of a growth suppressing BTB/POZ domain protein with the DP component of the E2F transcription factor. EMBO J. 18, 212–228 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Adams, L. Bandara, J. Gannon, B. Kaelin, S. Mittnacht and Y. Nakatani for providing reagents, L. Delavaine for His–E1A, M. Caldwell for assistance in preparing the manuscript, and the Medical Research Council, the Wellcome Trust, the Leukaemia Research Fund and European Union for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas B. La Thangue.

Supplementary information

Download plugins

Table S1 Numerical data for Fig. 5c (PDF 27 kb)

Table S2 Effect of p300 alone

Table S3 Examples of numerical data taken from other experiments

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, H., Krstic-Demonacos, M., Smith, L. et al. Acetylation control of the retinoblastoma tumour-suppressor protein. Nat Cell Biol 3, 667–674 (2001). https://doi.org/10.1038/35083062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35083062

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing