Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PAR-1 is a Dishevelled-associated kinase and a positive regulator of Wnt signalling

Abstract

Wnt signalling regulates β-catenin-dependent developmental processes through the Dishevelled protein (Dsh). Dsh regulates two distinct pathways, one mediated by β-catenin and the other by Jun kinase (JNK). We have purified a Dsh-associated kinase from Drosophila that encodes a homologue of Caenorhabditis elegans PAR-1, a known determinant of polarity during asymmetric cell divisions. Treating cells with Wnt increases endogenous PAR-1 activity coincident with Dsh phosphorylation. PAR-1 potentiates Wnt activation of the β-catenin pathway but blocks the JNK pathway. Suppressing endogenous PAR-1 function inhibits Wnt signalling through β-catenin in mammalian cells, and Xenopus and Drosophila embryos. PAR-1 seems to be a positive regulator of the β-catenin pathway and an inhibitor of the JNK pathway. These findings show that PAR-1, a regulator of polarity, is also a modulator of Wnt–β-catenin signalling, indicating a link between two important developmental pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification and cloning of Drosophila and human PAR-1 as encoding a Dishevelled-associated kinase.
Figure 2: Wnt stimulates PAR-1 activity and suppression of PAR-1 blocks Wnt signalling.
Figure 3: PAR-1 antisense oligonucleotides decrease the response to Wnt in human cells.
Figure 4: PAR-1 potentiates the canonical Wnt pathway at a step upstream of Axin and β-catenin, and inhibits the JNK pathway.
Figure 5: Suppression of PAR-1 inhibits Wnt signalling in Xenopus.
Figure 6: Effects of loss of function and overproduction of dPAR-1 during Drosophila development.

Similar content being viewed by others

References

  1. Cadigan, K. M. & Nusse, R. Wnt signalling: a common theme in animal development. Genes Dev. 11, 3286–3305 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Brown, J. D. & Moon, R. T. Wnt signalling: why is everything so negative? Curr. Opin. Cell Biol. 10, 182–187 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Peifer, M. & Polakis, V. Wnt signalling in oncogenesis and embryogenesis – a look outside the nucleus. Science 287, 1606–1609 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Boutros, M., Paricio, N., Strutt, D. I. & Mlodzik, M. Dishevelled activates JNK and discriminates between JNK pathways in planar polarity and wingless signalling. Cell 94, 109–118 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Axelrod, J. D., Miller, J. R., Shulman, J. M., Moon, R. T. & Perrimon, N. Differential recruitment of Dishevelled provides signalling specificity in the planar cell polarity and Wingless signalling pathways. Genes Dev. 12, 2610–2622 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li, L. et al. Dishevelled proteins lead to two signalling pathways: regulation of LEF1 and cJun N-terminal kinase in mammalian cells. J. Biol. Chem. 274, 129–134 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Klingensmith, J., Nusse, R. & Perrimon, N. The Drosophila segment polarity gene dishevelled encodes a novel protein required for response to the wingless signal. Genes Dev. 8, 118–130 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Theisen, H. et al. dishevelled is required during wingless signalling to establish both cell polarity and cell identity. Development 120, 347–360 (1994).

    CAS  PubMed  Google Scholar 

  10. Sokol, S. Y., Klingensmith, J., Perrimon, N. & Itoh, K. Dorsalizing and neuralizing properties of Xdsh, a maternally expressed Xenopus homolog of dishevelled. Development 121, 1637–1647 (1995).

    CAS  PubMed  Google Scholar 

  11. Yanagawa, S., van Leeuwen, F., Wodarz, A., Klingensmith, J. & Nusse, R. The Dishevelled protein is modified by wingless signalling in Drosophila. Genes Dev. 9, 1087–1097 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Lee, J.-S., Ishimoto, A. & Yanagawa, S.-I. Characterization of mouse Dishevelled (Dvl) proteins in Wnt/Wingless signalling pathway. J. Biol. Chem. 274, 21464–21470 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Guo, S. & Kemphues, K. J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81, 611–620 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Shulman, J. M., Benton, R. & Johnston, D. S. The Drosophila homolog of C. elegans PAR-1 organizes the oocyte cytoskeleton and directs oskar mRNA localization to the posterior pole. Cell 101, 377–388 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Tomancak, P. et al. A Drosophila melanogaster homologue of Caenorhabditis elegans par-1 acts at an early step in embryonic-axis formation. Nature Cell Biol. 2, 458–460 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Cox, D. N., Lu, B., Sun, T.-Q., Williams, L. T. & Jan, Y. N. Drosophila par-1 is required for oocyte differentiation and microtubule organization. Curr. Biol. 11, 75–87 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Espinosa, L. & Navarro, E. Human serine/threonine protein kinase EMK1: genomic structure and cDNA cloning of isoforms produced by alternative splicing. Cytogenet. Cell Genet. 81, 278–282 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. van Leeuwen, F., Samos, C. H. & Nusse, R. Biological activity of soluble wingless protein in cultured Drosophila imaginal disc cells. Nature 368, 342–344 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Peifer, M., Sweeton, D., Casey, M. & Wieschaus, E. Wingless signal and zeste-white 3 kinase trigger opposing changes in the intracellular distribution of armadillo. Development 120, 369–380 (1994).

    CAS  PubMed  Google Scholar 

  20. Papkoff, J., Rubinfeld, B., Schryver, B. & Polakis, P. Wnt-1 regulates free pools of catenins and stabilizes APC–catenin complexes. Mol. Cell. Biol. 16, 2128–2134 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Salic, A., Lee, E., Mayer, L. & Kirschner, M. W. Control of β-catenin stability: reconstitution of the cytoplasmic steps of the wnt pathway in Xenopus egg extracts. Mol. Cell 5, 523–532 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Molenaar, M. et al. XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Behrens, J. et al. Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382, 638–642 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Huber, O. et al. Nuclear localization of β-catenin by interaction with transcription factor LEF-1. Mech. Dev. 59, 3–10 (1996).

    CAS  Google Scholar 

  25. Korinek, V. et al. Constitutive transcriptional activation by a β-catenin–Tcf complex in APC−/− colon carcinoma. Science 275, 1784–1787 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Morin, P. J. et al. Activation of β-catenin–Tcf signalling in colon cancer by mutations in β-catenin or APC. Science 275, 1787–1790 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Hsu, S. C., Galceran, J. & Grosschedl, R. Modulation of transcriptional regulation by LEF-1 in response to Wnt-1 signalling and association with β-catenin. Mol. Cell. Biol. 18, 4807–4818 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zeng, L. et al. The mouse Fused locus encodes Axin, an inhibitor of the Wnt signalling pathway that regulates embryonic axis formation. Cell 90, 181–192 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Sakanaka, C., Weiss, J. H. & Williams, L. T. Bridging of β-catenin and glycogen synthase kinase-3β by Axin and inhibition of β-catenin mediated transcription. Proc. Natl Acad. Sci. USA 95, 3020–3023 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ikeda, S. et al. Axin, a negative regulator of the Wnt signalling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin. EMBO J. 17, 1371–1784 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wallingford, J. B. et al. Dishevelled controls cell polarity during Xenopus gastrulation. Nature 405, 81–85 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Heisenberg, C.-P. et al. Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 405, 76–81 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Moon, R. T. & Kimelman, D. X. From cortical rotation to organizer gene expression: toward a molecular explanation of axis specification in Xenopus. BioEssays 20, 536–545 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Christian, J. L., McMahon, J. A., McMahon, A. P. & Moon, R. T. Xwnt-8, a Xenopus wnt-1/int-1 related gene responsive to mesoderm inducing growth factors, may play a role in ventral mesodermal patterning during early development. Development 111, 1045–1055 (1991).

    CAS  PubMed  Google Scholar 

  35. Deardorff, M. A., Tan, C., Conrad, L. J. & Klein, P. S. Frizzled-8 is expressed in the Spemann organizer and plays a role in early morphogenesis. Development 125, 2687–2700 (1998).

    CAS  PubMed  Google Scholar 

  36. Sokol, S. Y. Analysis of Dishevelled signalling pathways during Xenopus development. Curr. Biol. 6, 1456–1467 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Peters, J. M., McKay, R. M., McKay, J. P. & Craff, J. M. Casein kinase I transduces Wnt signals. Nature 401, 345–350 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. He, X., Saint-Jeannet, J.-P., Woodgett, J. R., Varmus, H. E. & Dawid, I. Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature 374, 617–622 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Pierce, S. B. & Kimelman, D. Regulation of Spemann organizer formation by the intracellular kinase Xgsk-3. Development 121, 755–765 (1995).

    CAS  PubMed  Google Scholar 

  40. Kennerdell, J. R. & Carthew, R. W. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the Wingless pathway. Cell 95, 1017–1026 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Baker, N. E. Embryonic and imaginal requirements for wg, a segment polarity gene in Drosophila. Dev. Biol. 125, 96–108 (1988).

    Article  CAS  PubMed  Google Scholar 

  42. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  43. Rocheleau, C. E. et al. Wnt signalling and an APC-related gene specify endoderm in early C. elegans embryos. Cell 90, 707–716 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Thorpe, C. J., Schlesinger, A., Carter, J. C. & Bowerman, B. Wnt signalling polarizes an early C. elegans blastomere to distinguish endoderm from mesoderm. Cell 90, 695–705 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Sakanaka, C., Leong, P., Xu, L., Harrison, S. D. & Williams, L. T. Casein kinase Iɛ in the Wnt pathway: regulation of β-catenin function. Proc. Natl Acad. Sci. USA 96, 12548–12552 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yost, C. et al. GBP, an inhibitor of GSK-3, is implicated in Xenopus development and oncogenesis. Cell 93, 1031–1041 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Li, L. et al. Axin and Frat1 interact with dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1. EMBO J. 18, 4233–4240 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tsang, M. et al. Isolation and characterization of mouse dishevelled-3. Dev. Dynam. 207, 253–262 (1996).

    Article  CAS  Google Scholar 

  49. Reichsman, F., Smith, L. & Cumberlege, S. Glycosaminoglycans can modulate extracellular localization of the Wingless protein and promote signal transduction. J. Cell Biol. 135, 819–827 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Murphy, J. E. et al. A combinatorial approach to the discovery of efficient cationic peptoid reagents for gene delivery. Proc. Natl Acad. Sci. USA 95, 1517–1522 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Fernandez at Rockefeller University for protein sequencing. We are grateful to R. Grosschedl, S. Cumberlege, P. Klein, D. Kessler, R. Zuckermann, M. Milner, R. Carthew and Developmental Studies Hybridoma Band for critical reagents. We appreciate helpful discussions with C. Mello, T. H. Shin, C. Sakanaka, K. Ramer, and D. Yan. We thank M. Wu for the Xenopus injection assay, S. Harrison for critical reading of the manuscript, C. Turk for technical assistance and B. Cheung for administrative assistance. This work was supported partially by funds from the National Institutes of Health-Program of Excellence in Molecular Biology (PO HL43821) and by an unrestricted award from the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lewis T. Williams.

Supplementary information

Figure S1

Identification of a Dsh-associated kinase from Drosophila embryos and cultured cells. (PDF 252 kb)

Figure S2 Purification and cloning of Dsh-associated kinase from Drosophila embryos.

Figure S3 In vitro and in vivo phosphorylation of Dsh by dPAR-1.

Figure S4 RT-PCR analysis showing expression of three hPAR-1 genes in different human tissues.

Figure S5 Dvl phosphorylation induced by Wnt is sensitive to phosphatase treatment.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, TQ., Lu, B., Feng, JJ. et al. PAR-1 is a Dishevelled-associated kinase and a positive regulator of Wnt signalling. Nat Cell Biol 3, 628–636 (2001). https://doi.org/10.1038/35083016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35083016

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing