Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization

Abstract

Wiskott–Aldrich syndrome protein (WASP) and N-WASP have emerged as key proteins connecting signalling cascades to actin polymerization. Here we show that the amino-terminal WH1 domain, and not the polyproline-rich region, of N-WASP is responsible for its recruitment to sites of actin polymerization during Cdc42-independent, actin-based motility of vaccinia virus. Recruitment of N-WASP to vaccinia is mediated by WASP-interacting protein (WIP), whereas in Shigella WIP is recruited by N-WASP. Our observations show that vaccinia and Shigella activate the Arp2/3 complex to achieve actin-based motility, by mimicking either the SH2/SH3-containing adaptor or Cdc42 signalling pathways to recruit the N-WASP–WIP complex. We propose that the N-WASP–WIP complex has a pivotal function in integrating signalling cascades that lead to actin polymerization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The WH1 domain mediates recruitement of N-WASP to vaccinia.
Figure 2: GFP–N-WASP can bind to Nck and Cdc42.
Figure 3: Actin-based motility of vaccinia is Cdc42-independent.
Figure 4: Mutations analogous to those in Wiskott–Aldrich syndrome abolish recruitment of the N-WASP WH1 domain.
Figure 5: WIP is required for vaccinia actin-tail formation.
Figure 6: Overexpression of WIP(WBD) inhibits vaccinia recruitment of N-WASP and blocks actin-tail formation.
Figure 7: WIP and Nck are recruited to vaccinia in the absence of N-WASP.
Figure 8: Shigella recruits WIP and Nck.

Similar content being viewed by others

References

  1. Miki, H., Minura, K. & Takenawa, T. N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. EMBO J. 15, 5326– 5335 (1996).

    Article  Google Scholar 

  2. Symons, M. et al. Wiskott–Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell 84, 723–734 ( 1996).

    Article  CAS  Google Scholar 

  3. Derry, J. M. J., Ochs, H. J. & Francke, U. Isolation of a novel gene mutated in Wiskott–Aldrich syndrome. Cell 78, 635– 644 (1994).

    Article  CAS  Google Scholar 

  4. Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231 (1999).

    Article  CAS  Google Scholar 

  5. Aspenström, P., Lindberg, U. & Hall, A. Two GTPases, Cdc42 and Rac, bind directly to a protein implicated in the immunodeficiency disorder Wiskott–Aldrich syndrome. Curr. Biol. 6, 70–75 (1996).

    Article  Google Scholar 

  6. Miki, H., Sasaki, T., Takai, Y. & Takenawa, T. Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP . Nature 391, 93–96 (1998).

    Article  CAS  Google Scholar 

  7. Abdul-Manan, N. et al. Structure of Cdc42 in complex with the GTPase-binding domain of the Wiskott–Aldrich syndrome protein. Nature 399, 379–383 (1999).

    Article  CAS  Google Scholar 

  8. Rivero-Lezcano, O. M., Macillia, A., Sameshima, J. H. & Robbins, K. C. Wiskott–Aldrich syndrome protein physically associates with Nck through Src homology domains. Mol. Cell Biol. 15, 5725–5731 (1995).

    Article  CAS  Google Scholar 

  9. She, H. et al. Wiskott–Aldrich syndrome protein is associated with the adapter protein Grb2 and the epidermal growth factor receptor in living cells. Mol. Biol. Cell 8, 1709–1721 (1997).

    Article  CAS  Google Scholar 

  10. Carlier, M. F. et al. GRB2 links signalling to actin assembly by enhancing interaction of neural Wiskott–Aldrich syndrome protein (N-Wasp) with actin-related-protein ARP2/3 complex. J. Biol. Chem. (in the press).

  11. Carlier, M-F., Ducruix, A. & Pantaloni, D. Signalling to actin: the Cdc42–N-WASP–Arp2/3 connection. Chem. Biol. 6, R235–R240 ( 1999).

    Article  Google Scholar 

  12. Machesky, L. M. & Insall, R. H. Scar1 and the related Wiskott–Aldrich syndrome protein WASP regulate the actin cytoskeleton through the Arp2/3 complex. Curr. Biol. 8, 1347–1356 (1998).

    Article  CAS  Google Scholar 

  13. Yarar, D., To, W., Abo, A. & Welch, D. M. The Wiskott–Aldrich syndrome protein directs actin-based motility by stimulating actin nucleation with the Arp2/3 complex. Curr. Biol. 9, 555–558 (1999).

    Article  CAS  Google Scholar 

  14. Machesky, L. M. et al. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc. Natl Acad. Sci. USA 96, 3739–3744 (1999).

    Article  CAS  Google Scholar 

  15. Blanchoin, L. et al. Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins. Nature 404 , 1007–1011 (2000).

    Article  CAS  Google Scholar 

  16. Cudmore, S., Cossart, P., Griffiths, G. & Way, M. Actin-based motility of vaccinia virus. Nature 378, 636–638 (1995).

    Article  CAS  Google Scholar 

  17. Frischknecht, F. et al. Actin based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature 401, 926– 929 (1999).

    Article  CAS  Google Scholar 

  18. Frischknecht, F. et al. Tyrosine phosphorylation is required for actin based motility of vaccinia but not Listeria or Shigella. Curr. Biol. 9, 89–92 (1999 ).

    Article  CAS  Google Scholar 

  19. Murray, J. M. & Johnson, D. I. Isolation and characterization of Nrf1p, a novel negative regulator of the Cdc42p GTPase in Schizosaccharomyces pombe. Genetics 154, 155– 165 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ory, S., Munari-Silem, Y., Fort, P. & Jurdic, P. Rho and Rac exert antagonistic functions on spreading of macrophage-derived multinucleated cells and are not required for actin fiber formation. J. Cell Sci. 113, 1177–1188 (2000).

    CAS  PubMed  Google Scholar 

  21. Aktories, K. Rho proteins: targets for bacterial toxins. Trends Microbiol. 5, 282–288 (1997).

    Article  CAS  Google Scholar 

  22. Schindelhauer, D. et al. Wiskott–Aldrich syndrome: no strict genotype–phenotype correlations but clustering of missense mutations in the amino-terminal part of the WASP gene product. Hum. Genet. 98, 68–76 (1996).

    Article  CAS  Google Scholar 

  23. Fedorov, A. A., Fedorov, E., Gertler, F. & Almo, S. C. Structure of EVH1, a novel proline-rich ligand-binding module involved in cytoskeletal dynamics and neural function. Nature Struct. Biol. 6, 661–665 (1999).

    Article  CAS  Google Scholar 

  24. Prehoda, K. E., Lee, D. J. & Lim, W. A. Structure of the Enabled/VASP homology 1 domain-peptide complex: a key component in the spatial control of actin assembly. Cell 97, 471–480 ( 1999).

    Article  CAS  Google Scholar 

  25. Ramesh, N., Anton, I.E., Hartwig, J. H. & Geha, R. S. WIP, a protein associated with Wiskott–Aldrich syndrome protein, induces actin polymerization and redistribution in lymphoid cells. Proc. Natl Acad. Sci. USA 94, 14671–14676 (1997).

    Article  CAS  Google Scholar 

  26. Stewart, D. M., Tian, L. & Nelson, L. D. Mutations that cause Wiskott–Aldrich syndrome impair the interaction of Wiskott–Aldrich syndrome protein (WASP) with WASP interacting protein. J. Immunol. 162, 5019–5024 (1999).

    CAS  PubMed  Google Scholar 

  27. Anton, I. M., Lu, W., Mayer, B. J., Ramesh, N. & Geha, R.S. The Wiskott–Aldrich syndrome protein-interacting protein (WIP) binds to the adapter protein Nck. J. Biol. Chem. 273, 20992–20995 ( 1998).

    Article  CAS  Google Scholar 

  28. Suzuki, T., Miki, H., Takenawa, T. & Sasakawa, C. Neural Wiskott–Aldrich syndrome protein is implicated in the actin based motility of Shigella flexneri. EMBO J. 17, 2767– 2776 (1998).

    Article  CAS  Google Scholar 

  29. Egile, C. et al. Activation of the Cdc42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J. Cell Biol. 146, 1319–1332 (1999).

    Article  CAS  Google Scholar 

  30. Loisel, T. P., Boujemaa, R., Pantaloni, D. & Carlier, M-F. Reconstition of actin based motility of Listeria and Shigella using pure proteins. Nature 401, 613–616 (1999).

    Article  CAS  Google Scholar 

  31. Cudmore, S., Reckmann, I. & Way, M. Viral manipulations of the actin cytoskeleton. Trends Microbiol. 5, 142–148 (1997).

    Article  CAS  Google Scholar 

  32. Dramsi, S. & Cossart, P. Intracellular pathogens and the actin cytoskeleton. Annu. Rev. Cell Dev. Biol. 14, 137–166 (1998).

    Article  CAS  Google Scholar 

  33. Welch, M. D., Iwamatsu, A. & Mitchison, T. J. Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature 385 , 265–269 (1997).

    Article  CAS  Google Scholar 

  34. Carlier, M.-F. et al. Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J. Cell Biol. 136, 1307–1323 ( 1997).

    Article  CAS  Google Scholar 

  35. Rosenblatt, J., Agnew, B. J., Abe, H., Bamburg, J. R. & Mitchison, T. J. Xenopus actin depolymerizing factor/cofilin (XAC) is responsible for the turnover of actin filaments in Listeria monocytogenes tails. J. Cell Biol. 136, 1323– 1332 (1997).

    Google Scholar 

  36. Welch, M. D., Rosenblatt, J., Skole, J., Portnoy, D. A. & Mitchison, T. J. Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science 281, 105–108 ( 1998).

    Article  CAS  Google Scholar 

  37. Imai, K., et al. The pleckstrin homology domain of the Wiskott–Aldrich syndrome protein is involved in the organization of actin cytoskeleton. Clin. Immunol. 92, 128–137 (1999).

    Article  CAS  Google Scholar 

  38. May, R. C. et al. The Arp2/3 complex is essential for the actin-based motility of Listeria monocytogenes. Curr. Biol. 9, 759–762 (1999).

    Article  CAS  Google Scholar 

  39. Banin, S. et al. Wiskott–Aldrich syndrome protein (WASp) is a binding partner for c-Src family protein tyrosine kinases. Curr. Biol. 6, 981–988 (1996).

    Article  CAS  Google Scholar 

  40. Ma, L., Rohatgi, R. & Kirschner, M. W. Biochemical purification of factors that mediate Cdc42-induced actin polymerization. Mol. Biol. Cell 10, (suppl.) 384a (1999).

  41. Li, R. Bee1, a yeast protein with homology to Wiskott–Aldrich syndrome protein, is critical for the assembly of cortical actin cytoskeleton. J. Cell Biol. 136, 649–658 ( 1997).

    Article  CAS  Google Scholar 

  42. Naqvi, S. N., Zahn, R., Mitchell, D. A., Stevenson, B. J. & Munn, A. L. The WASp homologue Las17p functions with the WIp homologue End5p/verprolin and is essential for endocytosis. Curr. Biol. 8, 959–962 ( 1998).

    Article  CAS  Google Scholar 

  43. Vaduva, G., Martin, N. C. & Hopper, A. K. Actin-binding verprolin is a polarity development protein required for morphogenesis and function of the yeast actin cytoskeleton . J. Cell Biol. 139, 1821– 1833 (1997).

    Article  CAS  Google Scholar 

  44. Madania, A. et al. The Saccharomyces cerevisiae homologue of human Wiskott–Aldrich syndrome protein Las17p interacts with the Arp2/3 complex. Mol. Biol. Cell 10, 3521–3538. (1999).

    Article  CAS  Google Scholar 

  45. Anderson, B. L. et al. The Src homology domain 3 (SH3) of a yeast type I myosin, Myo5p, binds verprolin and is required for targeting to sites of actin polymerization . J. Cell Biol. 141, 1357– 1370 (1998).

    Article  CAS  Google Scholar 

  46. Lechler, T., Shevchenko, A., Shevchenko, A. & Li, R. Direct involvement of yeast type I myosins in Cdc42-dependent actin polymerization . J. Cell Biol. 148, 363– 373 (2000).

    Article  CAS  Google Scholar 

  47. Evangelista, M. et al. A role for myosin-I in actin assembly through interactions with Vrp1p, Bee1p and the Arp2/3 complex. J. Cell Biol. 148, 353–362 (2000).

    Article  CAS  Google Scholar 

  48. Le Bot, N., Antony, C., White, J., Karsenti, E. & Vernos, I. Role of Xklp3, a subunit of the Xenopus kinesin II heterotrimeric complex, in membrane transport between the endoplasmic reticulum and the Golgi apparatus. J. Cell Biol. 143, 1559 –1573 (1999).

    Article  Google Scholar 

  49. Clerc, P. & Sansonetti, P. J. Entry of Shigella flexneri into HeLa cells: evidence for directed phagocytosis involving actin polymerization and myosin accumulation. Infect. Immun. 55, 2681 –2688 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Drechsel, D. N., Hyman, A. A., Hall, A. & Glotzer, M. A requirement for Rho and Cdc42 during cytokinesis in Xenopus embryos. Curr. Biol. 7, 12–23 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

We thank H. Miki (University of Tokyo) for providing rat N-WASP cDNA and anti-N-WASP antibody, and A. Hall (University College London) for human Cdc42 and Rac1 templates used for PCR and the GST–Cdc42(L61) expression construct. We also thank P. Sansonetti (Institut Pasteur, Paris), G. Smith (University of Oxford) K. Aktories (Freiburg, Germany), N. Le Bot (EMBL) and G. Stier (EMBL) for providing Shigella, vaccinia strain ΔA36R, Toxin B, anti-GFP antibody and modified pET24b vector, respectively. We thank A. Desai and G. Superti-Furga for critical reading of the manuscript.

Correspondence and requests for materials should be addressed to M.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Way.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreau, V., Frischknecht, F., Reckmann, I. et al. A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nat Cell Biol 2, 441–448 (2000). https://doi.org/10.1038/35017080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35017080

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing