Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intercellular communication mediated by the extracellular calcium-sensing receptor

Abstract

Agonist-evoked, intracellular Ca2+-signalling events are associated with active extrusion of Ca2+ across the plasma membrane, implying a local increase in Ca2+ concentration ([Ca2+]) at the extracellular face of the cell. The possibility that these external [Ca2+] changes may have specific physiological functions has received little consideration in the past. Here we show that, at physiological ambient [Ca2+], Ca2+ mobilization in one cell produces an extracellular signal that can be detected in nearby cells expressing the extracellular Ca2+-sensing receptor (CaR), a cell-surface receptor for divalent cations with a widespread tissue distribution. The CaR may therefore mediate a universal form of intercellular communication that allows cells to be informed of the Ca2+-signalling status of their neighbours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fura-2 measurements of [Ca2+]in in HEK-CaR cells grown under polypropylene mesh.
Figure 2: Pseudocolour images of HEK-CaR and BHK-21 cells in co-culture, showing fura-2 ratios.
Figure 3: Fura-2 measurements of [Ca2+]in in co-cultured cells.
Figure 4: Intracellular Ca2+ responses of HEK wild-type and BHK-21 cells in co-culture.
Figure 5: Intracellular Ca2+ responses of HEK-CaR and BHK-21 cells in co-culture.
Figure 6: NPS-R-467 sensitizes the CaR in the presence of reduced ambient [Ca2+].
Figure 7: Effects of extracellular Ca2+ buffers.

Similar content being viewed by others

References

  1. Camello, P., Gardner, J., Petersen, O. H. & Tepikin, A. V. Calcium dependence of calcium extrusion and calcium uptake in mouse pancreatic acinar cells. J. Physiol. (Lond.) 490, 585–593 (1996).

    Article  CAS  Google Scholar 

  2. Carafoli, E., Verma, A. K., James, P., Strehler, E. & Penniston, J. T. The calcium pump of the plasma membrane: structure–function relationships. Adv. Exp. Med. Biol. 255, 61–70(1989).

  3. Yamoah, E. N. et al. Plasma membrane Ca2+-ATPase extrudes Ca2+ from hair cell stereocilia. J. Neurosci. 18, 610–624 (1998).

    Article  CAS  Google Scholar 

  4. Tepikin, A. V., Voronina, S. G., Gallacher, D. V. & Petersen, O. H. Pulsatile Ca2+ extrusion from single pancreatic acinar cells during receptor-activated cytosolic Ca2+ spiking. J. Biol. Chem. 267, 14073–14076 (1992).

    CAS  PubMed  Google Scholar 

  5. Hofer, A. M., Landolfi, B., Debellis, L. A., Pozzan, T. & Curci, S. Free [Ca2+] dynamics measured in agonist-sensitive stores of single living intact cells: a new look at the refilling process. EMBO J. 17, 1986–1996 (1998).

    Article  CAS  Google Scholar 

  6. Muallem, S., Pandol, S. J. & Beeker, T. G. Calcium mobilizing hormones activate the plasma membrane Ca2+ pump of pancreatic acinar cells. J. Membr Biol 106, 57–69 (1988)

    Article  CAS  Google Scholar 

  7. Tepikin, A.V., Kostyuk, P.G., Snitsarev, V.A., Belan, P.V. Extrusion of calcium from a single isolated neuron of the snail Helix pomatia. J Membr. Biol. 23, 43–47 (1991).

    Article  Google Scholar 

  8. Wolff, T. et al. Evidence for agonist-induced export of intracellular Ca2+ in epithelial cells. Pflugers Arch. 424, 423–430 (1993).

    Article  CAS  Google Scholar 

  9. Foster, R. H. & Rojas, A. M. Evidence suggesting that the angiotensin II-sensitive intracellular Ca2+ pool is reloaded from the external space in adrenal glomerulosa cells. Gen. Pharmacol. 32, 171–177 (1999).

    Article  CAS  Google Scholar 

  10. Pozzan, T., Rizzuto, R., Volpe, P. & Meldolesi, J. Molecular and cellular physiology of intracellular calcium stores. Physiol. Rev. 74, 595–636 (1994).

    Article  CAS  Google Scholar 

  11. Vescovi, E. G., Ayala, Y. M., Di Cera, E. & Groisman, E. A. Characterization of the bacterial sensor protein PhoQ. Evidence for distinct binding sites for Mg2+ and Ca2+. J. Biol. Chem. 272, (3), 1440–1443 (1997).

    Article  Google Scholar 

  12. Xiong Z., Lu, W. & MacDonald, J. F. Extracellular calcium sensed by a novel cation channel in hippocampal neurons. Proc. Natl Acad. Sci. USA 94, 7012–7017 (1997).

    Article  Google Scholar 

  13. Kubo, Y., Miyashita, T. & Murata, Y. Structural basis for a Ca2+-sensing function of the metabotropic glutamate receptors. Science 13, 1722–1725 (1998).

    Article  Google Scholar 

  14. Brown, E.M. et al. Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature 366, 575–580 (1993).

  15. Brown, E. M., Vassilev, P. M. & Hebert, S. C. Calcium ions as extracellular messengers. Cell 83, 679–82 (1995).

    Article  CAS  Google Scholar 

  16. Brown, E. M., Chattopadhyay, N., Vassilev, P. M. & Hebert. S. C. The calcium-sensing receptor (CaR) permits Ca2+ to function as a versatile extracellular first messenger. Recent Prog. Horm. Res. 53, 257–280 (1998).

    CAS  PubMed  Google Scholar 

  17. Quinn, S.J. et al. The Ca2+-sensing receptor: a target for polyamines. Am. J. Physiol. 273, C1315–C1323 (1997).

    Article  CAS  Google Scholar 

  18. Nemeth, E.F. et al. Calcimimetics with potent and selective activity on the parathyroid calcium receptor. Proc. Natl Acad. Sci. USA 95, 4040–4045 (1998).

    Article  CAS  Google Scholar 

  19. Berglindh, T. & Obrink, K. J. A method for preparing isolated glands from the rabbit gastric mucosa. Acta Physiol. Scand. 96, 150–159 (1976).

    Article  CAS  Google Scholar 

  20. Hofer, A. M. & Scheenen, W. J. J. M. in Imaging Living Cells (eds Rizzuto, R. & Fasolato, C.) (Landes, Austin, Texas, 1999).

  21. Hofer, A. M., Schlue, W-R., Curci, S., & Machen, T. E. Spatial distribution and quantitation of free luminal [Ca] within the InsP3-sensitive internal store of individual BHK-21 cells. Ion dependence of InsP3-induced Ca release and reloading. FASEB J. 9, 788–798 (1995).

    Article  CAS  Google Scholar 

  22. Zhang, B. X., Zhao, H., Loessberg, P. & Muallem, S. Activation of the plasma membrane Ca2+ pump during agonist stimulation of pancreatic acini. J. Biol. Chem. 267, 15419–15425 (1992).

  23. Boitano, S., Dirksen, E. R. & Sanderson, M. J. Intercellular propagation of calcium waves mediated by inositol trisphosphate. Science 258, 292–295 (1992).

    Article  CAS  Google Scholar 

  24. Charles, A .C., Merrill. J. E., Dirksen, E. R. & Sanderson, M. J. Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 6, 983–992 (1991).

    Article  Google Scholar 

  25. Ennes, H. S., Young, S. H., Goliger, J. A., Mayer & E. A. Chemical signaling from colonic smooth muscle cells to DRG neurons in culture. Am. J. Physiol. 276, C602–C610 (1999).

    Article  CAS  Google Scholar 

  26. Osipchuk, Y. & Cahalan, M. Cell-to-cell spread of calcium signals mediated by ATP receptors in mast cells. Nature 359, 241–244 (1992).

    Article  CAS  Google Scholar 

  27. Grierson, J. P. & Meldolesi, J. Shear stress-induced [Ca2+]i transients and oscillations in mouse fibroblasts are mediated by endogenously released ATP. J. Biol. Chem. 270, 4451–4456 (1995).

  28. Schlosser, S. F., Burgstahler, A. D. & Nathanson, M. H. Isolated rat hepatocytes can signal to other hepatocytes and bile duct cells by release of nucleotides Proc. Natl Acad. Sci. USA 93, 9948–9953 (1996).

    Article  CAS  Google Scholar 

  29. Zanotti, S. & Charles, A. Extracellular calcium sensing by glial cells: low extracellular calcium induces intracellular calcium release and intercellular signaling J. Neurochem. 69, 594–602 (1997).

    Article  CAS  Google Scholar 

  30. Vassilev, P. M., Mitchel, J., Vassilev, M., Kanazirska, M. & Brown, E. M. Assessment of frequency-dependent alterations in the level of extracellular Ca2+ in the synaptic cleft. Biophys. J. 72, 2103–2116 (1997).

    Article  CAS  Google Scholar 

  31. Belan, P. et al. Isoproterenol evokes extracellular Ca2+ spikes due to secretory events in salivary gland cells. J. Biol. Chem. 273, 4106–4111 (1998).

    Article  CAS  Google Scholar 

  32. Petersen, O. H., Burdakov, D. & Tepikin, A. V. Polarity in intracellular calcium signaling. BioEssays 21, 851–860 (1999).

    Article  CAS  Google Scholar 

  33. Toescu, E. C. & Petersen, O. H. Region-specific activity of the plasma membrane Ca2+ pump and delayed activation of Ca2+ entry characterize the polarized, agonist-evoked Ca2+ signals in exocrine cells. J. Biol. Chem. 270, 8528–8535 (1995).

    Article  CAS  Google Scholar 

  34. Alonso, M. T., Alvarez, J., Montero, M., Sanchez, A. & Garcia-Sancho, J. Agonist-induced Ca2+ influx into human platelets is secondary to the emptying of intracellular Ca2+ stores. Biochem. J. 280, 783–789 (1991).

    Article  CAS  Google Scholar 

  35. Klishin, A., Sedova, M. & Blatter, L. Time-dependent modulation of capacitive Ca2+ entry signals by plasma membrane Ca2+ pump in endothelium. Am. J. Physiol. 274, C1117–C1128 (1998).

    Article  CAS  Google Scholar 

  36. Nelson, E. J. & Hinkle, P. M., Thyrotropin-releasing hormone activates Ca2+ efflux. J. Biol. Chem. 269, 30854–30860 (1994).

    CAS  PubMed  Google Scholar 

  37. Tepikin, A. V., Llopis, J., Snitsarev, V. A., Gallacher, D. V. & Petersen, O. H. The droplet technique: measurement of calcium extrusion from single isolated mammalian cells. Pflugers Arch. 428, 664–670 (1994).

    Article  CAS  Google Scholar 

  38. Berridge, M. J. & Galione, A. Cytosolic calcium oscillators FASEB J. 15, 3074–3082 (1988).

    Article  Google Scholar 

  39. Ruat, M., Snowman, A. M., Hester, L. D. & Snyder, S. H. Cloned and expressed rat Ca2+-sensing receptor. J. Biol. Chem. 271, 5972–5975 (1996).

    Article  CAS  Google Scholar 

  40. Chattopadhyay, N. et al. Extracellular calcium-sensing receptor in rat oligodendrocytes: expression and potential role in regulation of cellular proliferation and an outward K+ channel. Glia 24, 449–458 (1998).

    Article  CAS  Google Scholar 

  41. Cheng, I. et al. Expression of an extracellular calcium-sensing receptor in rat stomach. Gastroenterology 116, 118–126 (1999).

    Article  CAS  Google Scholar 

  42. Riccardi, D. et al. Cloning and functional expression of a rat kidney extracellular calcium/polyvalent cation-sensing receptor. Proc. Natl Acad. Sci. USA 92, 131–135 (1995).

    Article  CAS  Google Scholar 

  43. Bruce, J. I. et al. Molecular and functional identification of Ca2+ (Polyvalent Cation)-sensing receptor in rat pancreas J. Biol. Chem. 274, 20561–20568 (1999).

    Article  CAS  Google Scholar 

  44. Chattopadhyay, N. et al. Identification and localization of extracellular Ca2+-sensing receptor in rat intestine. Am. J. Physiol. 274, G122–G130 (1998).

    CAS  PubMed  Google Scholar 

  45. Cheng, I. et al. Identification and localization of the extracellular calcium-sensing receptor in human breast. J. Clin. Endocrinol. Metab. 83, 703–707(1998).

  46. McNeil, L., Hobson, S., Nipper, V. & Rodland, K. D. Functional calcium-sensing receptor expression in ovarian surface epithelial cells. Am. J. Obstet. Gynecol. 178, 305–313 (1998).

    Article  CAS  Google Scholar 

  47. Ray, J. M., Squires, P. E., Curtis, S. B., Meloche, M. R. & Buchan, A. M. Expression of the calcium-sensing receptor on human antral gastrin cells in culture. J. Clin. Invest. 99, 2328–2333 (1997).

    Article  CAS  Google Scholar 

  48. McNeil, S. E., Hobson, S. A., Nipper, V. & Rodland, K. D. Functional calcium-sensing receptors in rat J. Biol. Chem. 273, 1114–1120 (1998).

    Article  CAS  Google Scholar 

  49. Pfeiffer, F., Sternfeld, L., Schmid, A. & Schulz, I. Control of Ca2+ wave propagation in mouse pancreatic acinar cells. Am. J. Physiol. 274, C663–C672 (1998).

    Article  CAS  Google Scholar 

  50. Grynkiewicz, G. Poenie, M. & Tsien, R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450 (1985).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Quinn for helpful suggestions, and E. Nemeth and NPS Pharmaceuticals for the gift of NPS-R-467. This work was supported by a grant from the Harvard Digestive Diseases centre (to A.M.H.), a Medical Research Entry programme Award from the Medical Research Service of the Veteran’s Administration (to A.M.H.), a grant from the St. Giles Foundation, NIH grants DK48330, DK41415 and DK52005 (to E.M.B.) and NIH grant DK44571-10 (to D.I.S.). A.M.H. was supported by the Brigham Surgical Group Foundation and the Medical Research Service of the Veterans Administration. S.C. received support from the University of Bari and from the C.N.R., Italy.

Correspondence and requests for materials should be addressed to A.M.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldebaran M. Hofer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofer, A., Curci, S., Doble, M. et al. Intercellular communication mediated by the extracellular calcium-sensing receptor. Nat Cell Biol 2, 392–398 (2000). https://doi.org/10.1038/35017020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35017020

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing