Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Regulation of the APC and the exit from mitosis

Abstract

The events of late mitosis, from sister-chromatid separation to cytokinesis, are governed by the anaphase-promoting complex (APC), a multisubunit assembly that triggers the ubiquitin-dependent proteloysis of key regulatory proteins. An intricate regulatory network governs APC activity and helps to ensure that late mitotic events are properly timed and coordinated.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: A speculative model of the regulatory network controlling the APC in late mitosis.
Figure 2: Late anaphase in a newt lung cell.

References

  1. King, R. W., Deshaies, R.J., Peters, J.-M. & Kirschner, M. W. How proteolysis drives the cell cycle. Science 274, 1652–1659 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Hoyt, M. A. Eliminating all obstacles: regulated proteolysis in the eukaryotic cell cycle . Cell 91, 149–151 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Townsley, F. M. & Ruderman, J. V. Proteolytic ratchets that control progression through mitosis. Trends Cell Biol. 8, 238–244 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  4. Peters, J.-M. SCF and APC: the yin and yang of cell cycle regulated proteolysis. Curr. Opin. Cell Biol. 10, 759–768 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Hochstrasser, M. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30, 405–439 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Sudakin, V. et al. The cyclosome, a large complex containing cyclin-selective ubiquitin-ligase activity, targets cyclins for destruction at the end of mitosis . Mol. Biol. Cell 6, 185– 198 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. King, R. W., Peters, J.-M., Tugendreich, S., Rolfe, M., Hieter, P. & Kirschner, M. W. A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell 81, 279–288 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  8. Lahav-Baratz, S., Sudakin, V., Ruderman, J.V. & Hershko, A. Reversible phosphorylation controls the activity of cyclosome-associated cyclin-ubiquitin ligase. Proc. Natl Acad. Sci. USA 92, 9303 –9307 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zachariae, W. & Nasmyth, K. TPR proteins required for anaphase progression mediate ubiquitination of mitotic B-type cyclins in yeast. Mol. Biol. Cell 7, 791-801 (1996 ).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Charles, J. F., Jaspersen, S. L., Tinker-Kulberg, R. L., Hwang, L., Szidon, A. & Morgan, D. O. The Polo-related kinase Cdc5 activates and is destroyed by the mitotic cyclin destruction machinery in S. cerevisiae. Curr. Biol. 8, 497–507 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  11. Fang, G., Yu, H. & Kirschner, M. W. Direct binding of CDC20 protein family members activates the anaphase-promoting complex in mitosis and G1. Mol. Cell 2, 163–171 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Peters, J.-M., King, R. W., Hoog, C. & Kirschner, M. W. Identification of BIME as a subunit of the anaphase-promoting complex. Science 274, 1199–1201 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  13. Yu, H., Peters, J., King, R. W., Page, A. M., Hieter, P. & Kirschner, M. W. Identification of a cullin homology region in a subunit of the anaphase-promoting complex . Science 279, 1219–1222 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Grossberger, R. et al. Characterization of the DOC1/APC10 subunit of the yeast and the human anaphase-promoting complex. J. Biol. Chem. (in the press).

  15. Irniger, S., Piatti, S., Michaelis, C. & Nasmyth, K. Genes involved in sister chromatid separation are needed for B-type cyclin proteolysis in budding yeast. Cell 81, 269 –277 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Zachariae, W., Shin, T.H., Galova, M., Obermaier, B. & Nasmyth, K. Identification of subunits of the anaphase-promoting complex of Saccharomyces cerevisiae. Science 274, 1201–1204 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Kramer, K. M., Fesquet, D., Johnson, A. L. & Johnston, L. H. Budding yeast RSI1/APC2, a novel gene necessary for initiation of anaphase, encodes an APC subunit. EMBO J. 17, 498– 505 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hwang, L. H. & Murray, A. W. A novel yeast screen for mitotic arrest mutants identifies DOC1, a new gene involved in cyclin proteolysis . Mol. Biol. Cell 8, 1877– 1887 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zachariae, W. et al. Mass spectrometric analysis of the anaphase-promoting complex from yeast: identification of a subunit related to cullins. Science 279, 1216–1219 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  20. Visintin, R., Prinz, S. & Amon, A. CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science 278, 460– 463 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Schwab, M., Lutum, A.S. & Seufert, W. Yeast Hct1 is a regulator of Clb2 cyclin proteolysis . Cell 90, 683–693 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Dawson, I. A., Roth, S. & Artavanis-Tsakonas, S. The Drosophila cell cycle gene fizzy is required for normal degradation of cyclins A and B during mitosis and has homology to the CDC20 gene of Saccharomyces cerevisiae. J. Cell Biol. 129, 725–737 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Sigrist, S., Jacobs, J., Stratmann, R. & Lehner, C. F. Exit from mitosis is regulated by Drosophila fizzy and the sequential destruction of cyclins A, B, and B3. EMBO J. 14, 4827 –4838 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sigrist, S. J. & Lehner, C. F. Drosophila fizzy-related down-regulates mitotic cyclins and is required for cell proliferation arrest and entry into endocycles. Cell 90, 671–681 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Lorca, T., et al. Fizzy is required for activation of the APC/cyclosome in Xenopus egg extracts. EMBO J. 17, 3565 –3575 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Weinstein, J. Cell cycle-regulated expression, phosphorylation, and degradation of p55Cdc . J. Biol. Chem. 272, 28501– 28511 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Kramer, E. R., Gieffers, C., Holzl, G., Hengstschlager, M. & Peters, J.-M. Activation of the human anaphase promoting complex by proteins of the CDC20/Fizzy family. Curr. Biol. 8, 1207–1210 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Kim, S. H., Lin, D. P., Matsumoto, S., Kitazono, A. & Matsumoto, T. Fission yeast Slp1: an effector of the Mad2-dependent spindle checkpoint. Science 279 , 1045–1047 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Kitamura, K., Maekawa, H. & Shimoda, C. Fission yeast Ste9, a homolog of Hct1/Cdh1 and Fizzy-related, is a novel negative regulator of cell cycle progression during G1-phase. Mol. Biol. Cell 9, 1065–1080 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yamaguchi, S., Murakami, H. & Okayama, H. A WD repeat protein controls the cell cycle and differentiation by negatively regulating Cdc2/B-type cyclin complexes. Mol. Biol. Cell 8, 2475–2486 ( 1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zachariae, W., Schwab, M., Nasmyth, K. & Seufert, W. Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the Anaphase Promoting Complex. Science 282, 1721– 1724 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Lim, H. H., Goh, P. & Surana, U. Cdc20 is essential for the cyclosome-mediated proteolysis of both Pds1 and Clb2 during M phase in budding yeast. Curr. Biol. 8 , 231–234 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Shirayama, M., Zachariae, W., Ciosk, R. & Nasmyth, K. The Polo-like kinase Cdc5p and the WD-repeat protein Cdc20p/fizzy are regulators and substrates of the anaphase promoting complex in Saccharomyces cerevisiae. EMBO J. 17, 1336–1349 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jaspersen, S. L., Charles, J. F. & Morgan, D. O. Inhibitory phosphorylation of the APC regulator Hct1 is controlled by the kinase Cdc28 and the phosphatase Cdc14. Curr. Biol. 9, 227–236 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  35. Cohen-Fix, O., Peters, J.-M., Kirschner, M. W. & Koshland, D. Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p. Genes Dev. 10, 3081–3093 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  36. Funabiki, H., Yamano, H., Kumada, K., Nagao, K., Hunt, T. & Yanagida, M. Cut2 proteolysis required for sister-chromatid separation in fission yeast. Nature 381, 438–441 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  37. Ciosk, R., Zachariae, W., Michaelis, C., Shevchenko, A., Mann, M. & Nasmyth, K. An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell 93, 1067–1076 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  38. Kumada, K., Nakamura, T., Nagao, K., Funabiki, H., Nakagawa, T. & Yanagida, M. Cut1 is loaded onto the spindle by binding to Cut2 and promotes anaphase spindle movement upon Cut2 proteolysis. Curr. Biol. 8, 633–641 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Yamamoto, A., Guacci, V. & Koshland, D. Pds1, an inhibitor of anaphase in budding yeast, plays a critical role in the APC and checkpoint pathway(s). J. Cell Biol. 133, 99–110 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  40. Alexandru, G., Zachariae, W., Toth, A. & Nasmyth, K. Sister chromatid separation and chromosome re-duplication are regulated by different mechanisms in response to spindle damage. EMBO J. (in the press).

  41. Funabiki, H., Kumada, K. & Yanagida, M. Fission yeast Cut1 and Cut2 are essential for sister chromatid separation, concentrate along the metaphase spindle and form large complexes. EMBO J. 15, 6617– 6628 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nurse, P. Universal control mechanism regulating onset of M-phase. Nature 344, 503–508 ( 1990).

    Article  CAS  PubMed  Google Scholar 

  43. Dunphy, W.G. The decision to enter mitosis. Trends Cell Biol. 4, 202–207 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. King, R. W., Jackson, P. K. & Kirschner, M. W. Mitosis in transition. Cell 79, 563–571 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Morgan, D. O. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu. Rev. Cell Dev. Biol. 13, 261– 291 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Murray, A. W., Solomon, M. & Kirschner, M. The role of cyclin synthesis and degradation in the control of maturation promoting factor activity. Nature 339, 280–286 (1989).

    Article  CAS  PubMed  Google Scholar 

  47. Gallant, P. & Nigg, E. A. Cyclin B2 undergoes cell cycle-dependent nuclear translocation and, when expressed as a non-destructible mutant, causes mitotic arrest in HeLa cells. J. Cell Biol. 117, 213–224 (1992).

    Article  CAS  PubMed  Google Scholar 

  48. Holloway, S. L., Glotzer, M., King, R. W. & Murray, A. W. Anaphase is initiated by proteolysis rather than by the inactivation of maturation-promoting factor. Cell 73, 1393–1402 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Surana, U., Amon, A., Dowzer, C., McGrew, J., Byers, B. & Nasmyth, K. Destruction of the CDC28/CLB mitotic kinase is not required for the metaphase-to-anaphase transition in budding yeast. EMBO J. 12, 1969–1978 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rimmington, G., Dalby, B. & Glover, D. M. Expression of N-terminally truncated cyclin B in the Drosophila larval brain leads to mitotic delay at late anaphase. J. Cell Sci. 107, 2729–2738 (1994).

    CAS  PubMed  Google Scholar 

  51. Prinz, S., Hwang, E. S., Visintin, R. & Amon, A. The regulation of Cdc20 proteolysis reveals a role for the APC components Cdc23 and Cdc27 during S phase and early mitosis. Curr. Biol. 8, 750–760 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Clute, P. & Pines, J. Temporal and spatial regulation of cyclin B1 destruction in metaphase. Nature Cell Biol. 1, 82–87 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Minshull, J., Golsteyn, R., Hill, C. S. & Hunt, T. The A- and B-type cyclin associated cdc2 kinases in Xenopus turn on and off at different times in the cell cycle. EMBO J. 9, 2865–2875 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pines, J. & Hunter, T. Human cyclins A and B1 are differentially located in the cell and undergo cell cycle-dependent nuclear transport. J. Cell. Biol. 115, 1–17 (1991).

    Article  CAS  PubMed  Google Scholar 

  55. Tugendreich, S., Tonkiel, J., Earnshaw, W. & Hieter, P. CDC27Hs colocalizes with CDC16Hs to the centrosome and mitotic spindle and is essential for the metaphase to anaphase transition. Cell 81, 261–268 (1995).

    Article  CAS  PubMed  Google Scholar 

  56. Jörgensen, P.-M., Brundell, E., Starborg, M. & Höög, C. A subunit of the anaphase-promoting complex is a centromere-associated protein in mammalian cells. Mol. Cell. Biol. 18, 468–476 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kallio, M., Weinstein, J., Daum, J. R., Burke, D. J. & Gorbsky, G. J. Mammalian p55CDC mediates association of the spindle checkpoint protein Mad2 with the cyclosome/anaphase-promoting complex, and is involved in regulating anaphase onset and late mitotic events . J. Cell Biol. 141, 1393– 1406 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Su, T. T., Sprenger, F., DiGregorio, P. J., Campbell, S. D. & O’Farrell, P. H. Exit from mitosis in Drosophila syncytial embryos requires proteolysis and cyclin degradation, and is associated with localized dephosphorylation. Genes Dev. 12, 1495–1503 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huang, J. & Raff, J. The disappearance of cyclin B at the end of mitosis is regulated spatially in Drosophila cells. EMBO J. 18, 2184–2195 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Felix, M.-A., Labbe, J.-C., Doree, M., Hunt, T. & Karsenti, E. Triggering of cyclin degradation in interphase extracts of amphibian eggs by cdc2 kinase. Nature 346, 379–382 (1990).

    Article  CAS  PubMed  Google Scholar 

  61. Li, Y., Gorbea, C., Mahaffey, D., Rechsteiner, M. & Benezra, R. MAD2 associates with the cyclosome/anaphase-promoting complex and inhibits its activity. Proc. Natl Acad. Sci. USA 94, 12431–12436 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kotani, S. et al. PKA and MPF-activated Polo-like kinase regulate Anaphase-Promoting Complex activity and mitosis progression. Mol. Cell 1, 371–380 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Patra, D. & Dunphy, W. G. Xe-p9, a Xenopus Suc1/Cks protein, is essential for the Cdc2-dependent phosphorylation of the anaphase-promoting complex at mitosis. Genes Dev. 12, 2549– 2559 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Elledge, S. J. Cell cycle checkpoints: preventing an identity crisis. Science 274, 1664–1672 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  65. Rudner, A. D. & Murray, A. W. The spindle assembly checkpoint . Curr. Opin. Cell Biol. 8, 773– 780 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Hardwick, K. G. The spindle checkpoint. Trends Genet. 14, 1–4 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Hwang, L. H. et al. Budding yeast Cdc20: a target of the spindle checkpoint. Science 279, 1041–1044 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  68. Fang, G., Yu, H. & Kirschner, M. W. The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev. 12, 1871 –1883 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen, R.-H., Waters, J.-C., Salmon, E. D. & Murray, A. W. Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science 274, 242– 246 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Taylor, S. S. & McKeon, F. Kinetochore localization of murine Bub1 is required for normal mitotic timing and checkpoint response to spindle damage. Cell 89, 727–735 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Waters, J. C., Chen, R.-H., Murray, A. W. & Salmon, E. D. Localization of Mad2 to kinetochores depends on microtubule attachment, not tension. J. Cell Biol. 141, 1181– 1191 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gorbsky, G. J., Chen, R.-H. & Murray, A. W. Microinjection of antibody to Mad2 protein into mammalian cells in mitosis induces premature anaphase. J. Cell. Biol. 141, 1193–1205 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cohen-Fix, O. & Koshland, D. The anaphase inhibitor of Saccharomyces cerevisiae Pds1p is a target of the DNA damage checkpoint pathway. Proc. Natl Acad. Sci. USA 94, 14361– 14366 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Amon, A. Regulation of B-type cyclin proteolysis by Cdc28-associated kinases in budding yeast. EMBO J. 16, 2693– 2702 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Moll, T., Tebb, G., Surana, U., Robitsch, H. & Nasmyth, K. The role of phosphorylation and the CDC28 protein kinase in the cell cycle-regulated nuclear import of the S. cerevisiae transcription factor SWI5. Cell 66, 743– 758 (1991).

    Article  CAS  PubMed  Google Scholar 

  76. Knapp, D., Bhoite, L., Stillman, D. J. & Nasmyth, K. The transcription factor Swi5 regulates expression of the cyclin kinase inhibitor p40SIC1. Mol. Cell. Biol. 16, 5701–5707 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Toyn, J. H., Johnson, A. L., Donovan, J. D., Toone, W. M. & Johnston, L. H. The Swi5 transcription factor of Saccharomyces cerevisiae has a role in exit from mitosis through induction of the Cdk-inhibitor Sic1 in telophase. Genetics 145 , 85–96 (1996).

    Google Scholar 

  78. Verma, R., Annan, R. S., Huddleston, M. J., Carr, S. A., Reynard, G. & Deshaies, R. J. Phosphorylation of Sic1p by G1 Cdk required for its degradation and entry into S phase. Science 278, 455–460 (1997).

    Article  Google Scholar 

  79. Fesquet, D., Fitzpatrick, P. J., Johnson, A. L., Kramer, K. M., Toyn, J. H. & Johnston, L. H. A Bub2p-dependent spindle checkpoint pathway regulates the Dbf2 kinase in budding yeast. EMBO J. (in the press).

  80. Li, R. Bifurcation of the mitotic checkpoint pathway in budding yeast. Proc. Natl Acad. Sci. USA 96, 4989–4994 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schweitzer, B. & Philippsen, P. CDC15, an essential cell cycle gene in Saccharomyces cerevisiae, encodes a protein kinase domain . Yeast 7, 265–273 (1991).

    Article  CAS  PubMed  Google Scholar 

  82. Johnston, L. H., Eberly, S. L., Chapman, J. W., Araki, H. & Sugino, A. The product of the Saccharomyces cerevisiae cell cycle gene DBF2 has homology with protein kinases and is periodically expressed in the cell cycle. Mol. Cell. Biol. 10, 1358–1366 ( 1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kitada, K., Johnson, A. L., Johnston, L. H. & Sugino, A. A multicopy suppressor gene of the Saccharomyces cerevisiae G1 cell cycle mutant gene dbf4 encodes a protein kinase and is identified as CDC5. Mol. Cell. Biol. 13, 4445– 4457 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wan, J., Xu, H. & Grunstein, M. CDC14 of Saccharomyces cerevisiae. J. Biol. Chem. 267, 11274–11280 (1992).

    CAS  PubMed  Google Scholar 

  85. Taylor, G. S., Liu, Y., Baskerville, C. & Charbonneau, H. The activity of Cdc14p, an oligomeric dual specificity protein phosphatase from Saccharomyces cerevisiae, is required for cell cycle progression. J. Biol. Chem. 272, 24054–24063 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  86. Shirayama, M., Matsui, Y., Tanaka, K. & Toh-e, A. Isolation of a CDC25 family gene, MSI2/LTE1, as a multicopy suppressor of ira1. Yeast 10, 451–461 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  87. Shirayama, M., Matsui, Y. & Toh-e, A. The yeast TEM1 gene, which encodes a GTP-binding protein, is involved in termination of M phase. Mol. Cell. Biol. 14, 7476–7482 ( 1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shirayama, M., Matsui, Y. & Toh-e, A. Dominant mutant alleles of yeast protein kinase gene CDC15 suppress the lte1 defect in termination of M phase and genetically interact with CDC14. Mol. Gen. Genet. 251, 176–185 (1996).

    CAS  PubMed  Google Scholar 

  89. Luca, F. C. & Winey, M. MOB1, an essential yeast gene required for completion of mitosis and maintenance of ploidy. Mol. Biol. Cell 9, 29–46 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jaspersen, S. L., Charles, J. F., Tinker-Kulberg, R. L. & Morgan, D. O. A late mitotic regulatory network controlling cyclin destruction in Saccharomyces cerevisiae. Mol. Biol. Cell 9, 2803– 2817 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Visintin, R., Craig, K., Hwang, E. S., Prinz, S., Tyers, M. & Amon, A. The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol. Cell 2, 709–718 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  92. Shou, W. et al. Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell 97, 233–244 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Straight, A. F., Shou, W., Dowd, G. J., Turck, C. W., Deshaies, R. J., Johnson, A. D. & Moazed, D. Net1, a Sir2-associated nucleolar protein required for rDNA silencing and nucleolar integrity. Cell 97, 245–256 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  94. Visintin, R., Hwang, E. S. & Amon, A. Cfi1 prevents premature exit from mitosis by anchoring Cdc14 phosphatase in the nucleolus. Nature 398, 818–823 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Nigg, E.A. Polo-like kinases: positive regulators of cell division from start to finish . Curr. Opin. Cell Biol. 10, 776– 783 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Lane, H. A. & Nigg, E. A. Antibody microinjection reveals an essential role for human Polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J. Cell Biol. 135, 1701–1713 (1996).

    Article  CAS  PubMed  Google Scholar 

  97. Sunkel, C. E. & Glover, D. M. polo, a mitotic mutant of Drosophila displaying abnormal spindle poles. J. Cell Sci. 89, 25–38 ( 1988).

    PubMed  Google Scholar 

  98. Ohkura, H., Hagan, I. M. & Glover, D. M. The conserved Schizosaccharomyces pombe kinase plo1, required to form a bipolar spindle, the actin ring, and septum, can drive septum formation in G1 and G2 cells. Genes Dev. 9, 1059–1073 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Carmena, M., Riparbelli, M. G., Minestrini, G., Tavares, A. M., Adams, R., Callaini, G. & Glover, D. M. Drosophila Polo kinase is required for cytokinesis. J. Cell Biol. 143 , 659–671 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Descombes, P. & Nigg, E. A. The polo-like kinase Plx1 is required for M phase exit and destruction of mitotic regulators in Xenopus egg extracts. EMBO J. 17, 1328–1335 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pines, J. Four-dimensional control of the cell cycle. Nature Cell Biol. (in the press).

  102. Barkai, N. & Leibler, S. Robustness in simple biochemical networks. Nature 387, 913– 917 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Alon, U., Surette, M. G., Barkai, N. & Leibler, S. Robustness in bacterial chemotaxis. Nature 397, 168–171(1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This review is a distillation of many enjoyable conversations with members of my laboratory (Julia Charles, Sue Jaspersen, Jamison Nourse, Catherine Takizawa, and Rachel Tinker-Kulberg) and the laboratory of Andrew Murray (Hironori Funabiki, Adam Rudner, and Alex Szidon). I also thank Jan-Michael Peters and Kim Nasmyth for valuable comments on the manuscript, and I thank the many colleagues who provided their results before publication. Work in my laboratory is supported by the National Insitute of General Medical Sciences.

A supplementary video is available on Nature Cell Biology’s World-Wide Web site (http://cellbio.nature.com).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David O. Morgan.

Supplementary information

Mitosis in newt lung cells

The separation of sister chromatids in anaphase, as well as the complex events of mitotic exit that follow, are dependent on the destruction of anaphase inhibitors and mitotic cyclins. The sudden onset, perfect coordination, and sheer beauty of late mitotic events cannot be fully appreciated in a single snapshot. (Video courtesy of V. Skeen and E.D. Salmon) (MOV 6738 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morgan, D. Regulation of the APC and the exit from mitosis. Nat Cell Biol 1, E47–E53 (1999). https://doi.org/10.1038/10039

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/10039

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing