Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Centrosome duplication in mammalian somatic cells requires E2F and Cdk2–Cyclin A

Abstract

Centrosome duplication is a key requirement for bipolar spindle formation and correct segregation of chromosomes during cell division. In a manner highly reminiscent of DNA replication, the centrosome must be duplicated once, and only once, in each cell cycle. How centrosome duplication is regulated and coordinated with other cell-cycle functions remains poorly understood. Here, we have established a centrosome duplication assay using mammalian somatic cells. We show that centrosome duplication requires the activation of E2F transcription factors and Cdk2–cyclin A activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Centrosome duplication assay.
Figure 2: Overexpression of p16INK4 blocks centrosome duplication.
Figure 3: Centrosome duplication is dependent on Rb phosphorylation and E2F activity.
Figure 4: Centrosome duplication requires Cdk2–cyclin A activity.
Figure 5: Rescue of DNA replication in RbΔCdk-expressing cells by Cdk2–cyclin E.
Figure 6: Regulation of centrosome duplication in somatic cells.

Similar content being viewed by others

References

  1. Stearns, T. & Winey, M. The cell center at 100. Cell 91, 303–309 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Winey, M. & Byers, B. Assembly and functions of the spindle pole body in budding yeast. Trends Genet. 9, 300–304 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Paoletti, A. & Bornens, M. Organisation and functional regulation of the centrosome in animal cells. Prog. Cell Cycle Res. 3, 285–299 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Kellogg, D. R., Moritz, M. & Alberts, B. M. The centrosome and cellular organization. Annu. Rev. Biochem. 63, 639–674 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Heald, R., Tournebize, R., Habermann, A., Karsenti, E. & Hyman, A. Spindle assembly in Xenopus egg extracts: respective roles of centrosomes and microtubule self-organization. J. Cell Biol. 138, 615–628 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boveri, T. Zur Frage der Entstehung maligner Tumoren (Fisher Verlag, Jena, 1914).

    Google Scholar 

  7. Lingle, W. L., Lutz, W. H., Ingle, J. N., Maihle, N. J. & Salisbury, J. L. Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proc. Natl Acad. Sci. USA 95, 2950– 2955 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pihan, G. A. et al. Centrosome defects and genetic instability in malignant tumors . Cancer Res. 58, 3974– 3985 (1998).

    CAS  PubMed  Google Scholar 

  9. Kuriyama, R. & Borisy, G. G. Centriole cycle in Chinese hamster ovary cells as determined by whole-mount electron microscopy. J. Cell Biol. 91, 814–821 (1981).

    Article  CAS  PubMed  Google Scholar 

  10. Vorobjev, I. A. & Chentsov Yu, S. Centrioles in the cell cycle. I. Epithelial cells. J. Cell Biol. 93, 938–949 (1982).

    Article  CAS  PubMed  Google Scholar 

  11. Chretien, D., Buendia, B., Fuller, S. D. & Karsenti, E. Reconstruction of the centrosome cycle from cryoelectron micrographs. J. Struct. Biol. 120, 117–133 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Brinkley, B. R. Microtubule organizing centers. Annu. Rev. Cell Biol. 1, 145–172 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Kuriyama, R. & Borisy, G. G. Microtubule-nucleating activity of centrosomes in Chinese hamster ovary cells is independent of the centriole cycle but coupled to the mitotic cycle. J. Cell Biol. 91, 822–826 (1981).

    Article  CAS  PubMed  Google Scholar 

  14. Phillips, S. G. & Rattner, J. B. Dependence of centriole formation on protein synthesis. J. Cell Biol. 70, 9–19 (1976).

    Article  CAS  PubMed  Google Scholar 

  15. Sluder, G., Miller, F. J. & Rieder, C. L. The reproduction of centrosomes: nuclear versus cytoplasmic controls. J. Cell Biol. 103, 1873– 1881 (1986).

    Article  CAS  PubMed  Google Scholar 

  16. Raff, J. W. & Glover, D. M. Nuclear and cytoplasmic mitotic cycles continue in Drosophila embryos in which DNA synthesis is inhibited with aphidicolin. J. Cell Biol. 107, 2009 –2019 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Sluder, G., Miller, F. J., Cole, R. & Rieder, C. L. Protein synthesis and the cell cycle: centrosome reproduction in sea urchin eggs is not under translational control. J. Cell Biol. 110, 2025–2032 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Gard, D. L., Hafezi, S., Zhang, T. & Doxsey, S. J. Centrosome duplication continues in cycloheximide-treated Xenopus blastulae in the absence of a detectable cell cycle. J. Cell Biol. 110, 2033– 2042 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Hinchcliffe, E. H., Cassels, G. O., Rieder, C. L. & Sluder, G. The coordination of centrosome reproduction with nuclear events of the cell cycle in the sea urchin zygote. J. Cell Biol. 140, 1417–1426 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Palazzo, R. E., Vaisberg, E., Cole, R. W. & Rieder, C. L. Centriole duplication in lysates of Spisula solidissima oocytes [erratum Science 256, 1746 (1992)]. Science 256, 219–221 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Tournier, F., Cyrklaff, M., Karsenti, E. & Bornens, M. Centrosomes competent for parthenogenesis in Xenopus eggs support procentriole budding in cell-free extracts. Proc. Natl Acad. Sci. USA 88, 9929–9933 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hinchcliffe, E. H., Li, C., Thompson, E. A., Maller, J. L. & Sluder, G. Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in xenopus egg extracts. Science 283, 851–854 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Fukasawa, K., Choi, T., Kuriyama, R., Rulong, S. & Van de Woude, G. F. Abnormal centrosome amplification in the absence of p53. Science 271, 1744– 1747 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Zhou, H. et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nature Genet. 20, 189–193 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Lacey, K. R., Jackson, P. K. & Stearns, T. Cyclin-dependent kinase control of centrosome duplication . Proc. Natl Acad. Sci. USA 96, 2817– 2822 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Balczon, R. et al. Dissociation of centrosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested Chinese hamster ovary cells. J. Cell Biol. 130, 105– 115 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Lukas, J. et al. Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature 375, 503– 506 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Weinberg, R. A. The retinoblastoma protein and cell cycle control. Cell 81, 323–330 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Lukas, J. et al. Cyclin E-induced S phase without activation of the pRb/E2F pathway . Genes Dev. 11, 1479–1492 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, J. Y. Retinoblastoma protein in growth suppression and death protection. Curr. Opin. Genet. Dev. 7, 39–45 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Dyson, N. The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–2262 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Wu, C. L., Classon, M., Dyson, N. & Harlow, E. Expression of dominant-negative mutant DP-1 blocks cell cycle progression in G1. Mol. Cell. Biol. 16, 3698–3706 ( 1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Qin, X. Q., Livingston, D. M., Kaelin, W. G., Jr & Adams, P. D. Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc. Natl Acad. Sci. USA 91 , 10918–10922 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu, X. & Levine, A. J. p53 and E2F-1 cooperate to mediate apoptosis. Proc. Natl Acad. Sci. USA 91, 3602–3606 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kowalik, T. F., DeGregori, J., Schwarz, J. K. & Nevins, J. R. E2F1 overexpression in quiescent fibroblasts leads to induction of cellular DNA synthesis and apoptosis. J. Virol. 69, 2491–2500 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. van den Heuvel, S. & Harlow, E. Distinct roles for cyclin-dependent kinases in cell cycle control. Science 262, 2050–2054 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Pagano, M. et al. Regulation of the cell cycle by the cdk2 protein kinase in cultured human fibroblasts. J. Cell Biol. 121, 101–111 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Polyak, K. et al. Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78, 59–66 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  39. Toyoshima, H. & Hunter, T. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 78 , 67–74 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Knudsen, E. S., Buckmaster, C., Chen, T. T., Feramisco, J. R. & Wang, J. Y. Inhibition of DNA synthesis by RB: effects on G1/S transition and S-phase progression. Genes Dev. 12, 2278–2292 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stoeber, K. et al. Cdc6 protein causes premature entry into S phase in a mammalian cell-free system. EMBO J. 17, 7219– 7229 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Koff, A. et al. Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle. Science 257, 1689–1694 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Dulic, V., Lees, E. & Reed, S. I. Association of human cyclin E with a periodic G1-S phase protein kinase. Science 257, 1958–1961 ( 1992).

    Article  CAS  PubMed  Google Scholar 

  44. Helin, K. Regulation of cell proliferation by the E2F transcription factors. Curr. Opin. Genet. Dev. 8, 28–35 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Hateboer, G. et al. Cell cycle-regulated expression of mammalian CDC6 is dependent on E2F. Mol. Cell. Biol. 18, 6679– 6697 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yan, Z. et al. Cdc6 is regulated by E2F and is essential for DNA replication in mammalian cells. Proc. Natl Acad. Sci. USA 95, 3603–3608 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ohtani, K., DeGregori, J. & Nevins, J. R. Regulation of the cyclin E gene by transcription factor E2F1. Proc. Natl Acad. Sci. USA 92, 12146–12150 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schulze, A. et al. Cell cycle regulation of the cyclin A gene promoter is mediated by a variant E2F site. Proc. Natl Acad. Sci. USA 92 , 11264–11268 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Strausfeld, U. P. et al. Both cyclin A and cyclin E have S-phase promoting (SPF) activity in Xenopus egg extracts. J. Cell Sci. 109, 1555–1563 (1996).

    CAS  PubMed  Google Scholar 

  50. Fry, A. M., Meraldi, P. & Nigg, E. A. A centrosomal function for the human Nek2 protein kinase, a member of the NIMA-family of cell cycle regulators. EMBO J. 17, 470–481 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Y.-D. Stierhof for the electron microscopic data in Fig. 1, N. Roggli for help with artwork, and several colleagues for kind gifts of plasmids, particularly E. Harlow for Cdk1, 2 and 3, J. Massagué for p27Kip1, S. Reed for cyclin E , J. Pines for cyclin A , C.-L. Wu for DP1, and K. Helin for E2F. We also thank B. Amati as well as all members of the laboratory for stimulating discussions. This work was supported by grants from the Swiss National Science Foundation, the Swiss Cancer League, the Human Frontier Science Program and the Canton of Geneva.

Correspondence and requests for materials should be addressed to E.A.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich A. Nigg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meraldi, P., Lukas, J., Fry, A. et al. Centrosome duplication in mammalian somatic cells requires E2F and Cdk2–Cyclin A. Nat Cell Biol 1, 88–93 (1999). https://doi.org/10.1038/10054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/10054

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing