Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport

Abstract

The fate of free cholesterol released after endocytosis of low-density lipoproteins remains obscure. Here we report that late endosomes have a pivotal role in intracellular cholesterol transport. We find that in the genetic disease Niemann–Pick type C (NPC), and in drug-treated cells that mimic NPC, cholesterol accumulates in late endosomes and sorting of the lysosomal enzyme receptor is impaired. Our results show that the characteristic network of lysobisphosphatidic acid-rich membranes contained within multivesicular late endosomes regulates cholesterol transport, presumably by acting as a collection and distribution device. The results also suggest that similar endosomal defects accompany the anti-phospholipid syndrome and NPC.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Cholesterol accumulates in late endosomes of NPC fibroblasts.
Figure 2: IGF2/MPR is redistributed to late endosomes in NPC fibroblasts.
Figure 3: U18666A causes cholesterol accumulation in late endosomes.
Figure 4: Zn2+ causes cholesterol accumulation in late endosomes of cells expressing ZnT2.
Figure 5: IGF2/MPR is redistributed to late endosomes after treatment with U18666A or Zn2+.
Figure 6: Antibodies against LBPA cause cholesterol accumulation in late endosomes.

References

  1. Goldstein, J. L., Brown, M. S., Anderson, R. G. W., Russell, D. W. & Schneider, W. J. Receptor-mediated endocytosis . Annu. Rev. Cell Biol. 1, 1– 40 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. Gruenberg, J. & Maxfield, F. Membrane transport in the endocytic pathway. Curr. Opin. Cell Biol. 7, 552– 563 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Mullock, B. M., Bright, N. A., Fearon, C. W., Gray, S. R. & Luzio, J. P. Fusion of lysosomes with late endosomes produces a hybrid organelle of intermediate density and is NSF dependent. J. Cell Biol. 140, 591–601 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kobayashi, T., Gu, F. & Gruenberg, J. Lipids and lipid domains in endocytic membrane traffic . Semin. Cell Dev. Biol. 9, 517– 526 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Kobayashi, T. et al. A lipid associated with the antiphospholipid syndrome regulates endosome structure/function. Nature 392, 193–197 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Liscum, L. & Klansek, J. J. Niemann–Pick disease type C. Curr. Opin. Lipidol. 9, 131– 5 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Loftus, S.K. et al. Murine model of Niemann–Pick C disease: mutation in a cholesterol homeostasis gene. Science 277, 232–235 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Carstea, E. D. et al. Niemann–Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277, 228–231 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Watari, H. et al. Niemann–Pick C1 protein: obligatory roles for N-terminal domains and lysosomal targeting in cholesterol mobilization. Proc. Natl Acad. Sci. USA 96, 805–810 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Patel, S. C. et al. Localization of Niemann–Pick C1 protein in astrocytes: implications for neuronal degeneration in Niemann–Pick type C disease . Proc. Natl Acad. Sci. USA 96, 1657– 1662 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sokol, J. et al. Type C Niemann–Pick disease. Lysosomal accumulation and defective intracellular mobilization of low density lipoprotein cholesterol . J. Biol. Chem. 263, 3411– 3417 (1988).

    CAS  PubMed  Google Scholar 

  12. Chavrier, P., Parton, R. G., Hauri, H. P., Simons, K. & Zerial, M. Localisation of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell 62, 317–329 ( 1990).

    Article  CAS  PubMed  Google Scholar 

  13. Pentchev, P. G., Vanier, M. T., Suzuki, K. & Patterson, M. in The Metabolic and Molecular Bases of Inherited Disease (eds Scriver, C. R., Beaudet, W. S. & Sly, D.) 2625–2639 (McGraw-Hill, New-York, 1995).

    Google Scholar 

  14. Koike, T. et al. Decreased membrane fluidity and unsaturated fatty acids in Niemann–Pick disease type C fibroblasts. Biochim. Biophys. Acta 1406, 327–335 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Kornfeld, S. Structure and function of the mannose-6-phosphate/insulin-like growth factor II receptors. Annu. Rev. Biochem. 61, 307 –330 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Escola, J. M. et al. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B lymphocytes . J. Biol. Chem. 273, 20121– 20127 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Neufeld, E. B. et al. The Niemann–Pick C1 protein resides in a vesicular compartment linked to retrograde transport of multiple lysosomal cargo. J. Biol. Chem. 274, 9627–9635 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Liscum, L. & Faust, J. R. The intracellular transport of low density lipoprotein-derived cholesterol is inhibited in Chinese hamster ovary cells cultured with 3-beta-[2-(diethylamino)ethoxy]androst-5-en-17-one . J. Biol. Chem. 264, 11796– 11806 (1989).

    CAS  PubMed  Google Scholar 

  19. Pentchev, P.G. et al. The Niemann–Pick C lesion and its relationship to the intracellular distribution and utilization of LDL cholesterol. Biochim. Biophys. Acta 1225, 235–243 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Palmiter, R. D., Cole, T. B. & Findley, S. D. ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration. EMBO J. 15, 1784–1791 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aniento, F., Emans, N., Griffiths, G. & Gruenberg, J. Cytoplasmic dynein-dependent vesicular transport from early to late endosomes. J. Cell Biol. 123, 1373–1388 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Asherson, R. A., Cervera, R., Piette, J.-C., Shoenfeld, Y. (Eds) The Antiphospholipid Syndrome (CRC Press, Boca Raton, New York, London, Tokyo, 1996).

    Google Scholar 

  23. Alarcon-Segovia, D. & Cabral, A. R. The antiphospholipid/cofactor syndromes. J. Rheumatol. 23, 1319– 1322 (1996).

    CAS  PubMed  Google Scholar 

  24. Gruenberg, J., Griffiths, G. & Howell, K. E. Characterisation of the early endosome and putative endocytic carrier vesicles in vivo and with an assay of vesicle fusion in vitro. J. Cell Biol. 108, 1301– 1316 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Omura, K. et al. Type C Niemann–Pick disease: clinical and biochemical studies on six cases. Brain Dev. 11, 57– 61 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Sakuraba, H. et al. GM2 gangliosidosis AB variant: clinical and biochemical studies of a Japanese patient. Neurology 52, 372 –377 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Griffiths, G., McDowell, A., Back, R. & Dubochet, J. On the preparation of cryosections for immunocytochemistry. ltrastruct. Res. 89, 65–78 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Gagescu, G. van der Goot, F. Perez, and M. Rojo for critical reading of the manuscript. This work was supported by the Swiss National Science Foundation (J.G.), the NHMRC of Australia (R.G.P.) and by the International Human Frontier Science Program (J.G., R.G.P., T.K).

Correspondence and requests for materials should be addressed to J.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Gruenberg.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kobayashi, T., Beuchat, MH., Lindsay, M. et al. Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport. Nat Cell Biol 1, 113–118 (1999). https://doi.org/10.1038/10084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/10084

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing