Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coupling cell proliferation and development in plants

Abstract

Plant genome projects have revealed that both the cell-cycle components and the overall cell-cycle architecture are highly evolutionarily conserved. In addition to the temporal and spatial regulation of cell-cycle progression in individual cells, multicellularity has imposed extra layers of complexity that impinge on the balance of cell proliferation and growth, differentiation and organogenesis. In contrast to animals, organogenesis in plants is a postembryonic and continuous process. Differentiated plant cells can revert to a pluripotent state, proliferate and transdifferentiate. This unique potential is strikingly illustrated by the ability of certain cells to produce a mass of undifferentiated cells or a fully totipotent embryo, which can regenerate mature plants. Conversely, plant cells are highly resistant to oncogenic transformation. This review discusses the role that cell-cycle regulators may have at the interface between cell division and differentiation, and in the context of the high plasticity of plant cells.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The A. thaliana life cycle.
Figure 2: The retinoblastoma/E2F/DP pathway in A. thaliana.
Figure 3: Tentative integration of the RB/E2F/DP cell cycle pathway into cell growth, stem cell physiology, cell-cycle reactivation and development.

References

  1. Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

  2. Vandepoele, K et al. Genome-wide analysis of core cell cycle genes in Arabidopsis. Plant Cell 14, 903–916 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Baldauf, S. L. The deep roots of eukaryotes. Science 300, 1703–1706 (2003).

    CAS  PubMed  Article  Google Scholar 

  4. Weigel, D. & Jürgens, G. Stem cells that make stems. Nature 415, 751–754 (2002).

    CAS  PubMed  Article  Google Scholar 

  5. Gutierrez, C., Ramirez-Parra, E., Castellano, M. M. & del Pozo, J. C. G(1) to S transition: more than a cell cycle engine switch. Curr. Opin. Plant Biol. 5, 480–486 (2002).

    CAS  PubMed  Article  Google Scholar 

  6. Dewitte, W. & Murray, J. A. H. The plant cell cycle. Annu. Rev. Plant. Biol. 54, 235–264 (2003).

    CAS  PubMed  Article  Google Scholar 

  7. Inzé, D. Green light for the cell cycle. EMBO J. 24, 657–662 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. Boudolf, V. et al. The plant-specific cyclin-dependent kinase CDKB1;1 and transcription factor E2Fa-DPa control the balance of mitotically dividing and endoreduplicating cells in Arabidopsis. Plant Cell 16, 2683–2692 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Boudolf, V. et al. B1-type cyclin-dependent kinases are essential for the formation of stomatal complexes in Arabidopsis thaliana. Plant Cell 16, 945–955 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Wang, W. & Chen, Z. HUA ENHANCER3 reveals a role for a cyclin-dependent protein kinase in the specification of floral organ identity in Arabidopsis. Development 131, 3147–3156 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Ormenese, S. et al. Analysis of the spatial expression pattern of seven Kip related proteins (KRPs) in the shoot apex of Arabidopsis thaliana. Ann. Bot. 93, 575–580 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Wang, H., Zhou, Y., Gilmer, S., Whitwill, S. & Fowke, L. C. Expression of the plant cyclin-dependent kinase inhibitor ICK1 affects cell division, plant growth and morphology. Plant J. 24, 613–623 (2000).

    CAS  PubMed  Article  Google Scholar 

  13. De Veylder, L. et al. Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis. Plant Cell 13, 1653–1658 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Zhou, Y., Wang, H., Gilmer, S., Whitwill, S. & Fowke, L. C. Effects of co-expressing the plant CDK inhibitor ICK1 and D-type cyclin genes on plant growth, cell size and ploidyin Arabidopsis thaliana. Planta 216, 604–613 (2003).

    CAS  PubMed  Google Scholar 

  15. De Veylder, L., Beemster, G. T., Beeckman, T. & Inzé, D. CKS1At overexpression in Arabidopsis thaliana inhibits growth by reducing meristem size and inhibiting cell-cycle progression. Plant J. 25, 617–626 (2001).

    CAS  PubMed  Article  Google Scholar 

  16. Hülskamp, M., Schnittger, A. & Folkers, U. Pattern formation and cell differentiation: trichomes in Arabidopsis as a genetic model system. Int. Rev. Cytol. 186, 147–178 (1999).

    PubMed  Article  Google Scholar 

  17. Schnittger, A., Weinl, C., Bouyer, D., Schobinger, U. & Hulskamp, M. Misexpression of the cyclin-dependent kinase inhibitor ICK1/KRP1 in single-celled Arabidopsis trichomes reduces endoreduplication and cell size and induces cell death. Plant Cell 15, 303–315 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Wang, G. et al. Genome-wide analysis of the cyclin family in Arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteins Plant Physiol. 135, 1084–1099 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Cockcroft, C. E., den Boer, B. G., Healy, J. M. & Murray, J. A. Cyclin D control of growth rate in plants. Nature 405, 575–579 (2000).

    CAS  PubMed  Article  Google Scholar 

  20. Dewitte, W. et al. Altered cell cycle distribution, hyperplasia, and inhibited differentiation in Arabidopsis caused by the D-type cyclinCYCD3. Plant Cell 15, 79–92 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Tantikanjana, T. et al. Control of axillary bud initiation and shoot architecture in Arabidopsis through the SUPERSHOOT gene. Genes Dev. 15, 1577–1588 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Yu, Y., Steinmetz, A., Meyer, D., Brown, S. & Shen, W. H. The tobacco A-type cyclin, Nicta;CYCA3;2, at the nexus of cell division and differentiation. Plant Cell 15, 2763–2777 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Schnittger, A. et al. Ectopic D-type cyclin expression induces not only DNA replication but also cell division in Arabidopsis trichomes. Proc. Natl Acad. Sci. USA 99, 6410–6415 (2002).

    CAS  PubMed  Article  Google Scholar 

  24. Walker, J. D., Oppenheimer, D. G., Concienne, J. & Larkin, J. C. SIAMESE, a gene controlling the endoreduplication cell cycle in Arabidopsis thaliana trichomes. Development 127, 3931–3940 (2000).

    CAS  PubMed  Google Scholar 

  25. Tong, W & Pollard, J. W. Genetic evidence for the interactions of cyclin D1 and p27Kip1 in mice. Mol. Cell. Biol. 21, 1319–1328 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Soni, R., Carmichel, J. P., Shah, Z. H. & Murray, J. A. H. A family of cyclin D homologs from plants differentially controlled by growth regulators and containing the conserved retinoblastoma protein interaction motif. Plant Cell 7, 85–103 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Xie, Q., Suarez-Lopez, P. & Gutierrez, C. Identification and analysis of a retinoblastoma binding motif in the replication protein of a plant DNA virus: requirement for efficient viral DNA replication. EMBO J. 14, 4073–4082 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Grafi, G. et al. A maize cDNA encoding a member of the retinoblastoma protein family: involvement in endoreduplication. Proc. Natl Acad. Sci. USA 93, 8962–8967 (1996).

    CAS  PubMed  Article  Google Scholar 

  29. Xie, Q., Sanz-Burgos, A. P., Hannon, G. J. & Gutierrez, C. Plant cells contain a novel member of the retinoblastoma family of growth regulatory proteins. EMBO J. 15, 4900–4908 (1996).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Boniotti, M. B. & Gutierrez, C. A cell-cycle regulated kinase activity phsphorylates plant retinoblastoma protein and contains, in Arabidopsis, a CDKA/cyclin D complex. Plant J. 28, 341–350 (2001).

    CAS  PubMed  Article  Google Scholar 

  31. Nakagami, H., Kawamura, K., Sugisaka, K., Sekine, M. & Shinmyo, A. Phosphorylation of retinoblastoma-related protein by the cyclin D/cyclin-dependent kinase complex is activated at the G1/S-phase transition in tobacco. Plant Cell 14, 1847–1857 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Yadegari, R. & Drews, G. N. Female gametophyte development. Plant Cell 16, S133–S141 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Ebel, C., Mariconti, L. & Gruissem, W. Plant retinoblastoma homologues control nuclear proliferation in the female gametophyte. Nature 429, 776–780 (2004).

    CAS  PubMed  Article  Google Scholar 

  34. Grafi, G. & Larkins, B. A. Endoreduplication in maize endosperm: involvement of M-phase promoting factor inhibition and induction of S-phase-related kinases. Science 269, 1262–1264 (1995).

    CAS  PubMed  Article  Google Scholar 

  35. de Jager, S. M., Menges, M., Bauer, U. M. & Murray, J. A. Arabidopsis E2F1 binds a sequence present in the promoter of S-phase-regulated gene AtCDC6 and is a member of a multigene family with differential activities. Plant Mol. Biol. 47, 555–568 (2001).

    CAS  PubMed  Article  Google Scholar 

  36. Mariconti, L. et al. The E2F family of transcription factors from Arabidopsis thaliana. Novel and conserved components of the retinoblastoma/E2F pathway in plants. J. Biol. Chem. 277, 9911–9919 (2002).

    CAS  PubMed  Article  Google Scholar 

  37. Kosugi, S. & Ohashi, Y. E2Ls, E2F-like repressors of Arabidopsis that bind to E2F sites in a monomeric form. J. Biol. Chem. 277, 16553–16558 (2002).

    CAS  PubMed  Article  Google Scholar 

  38. Vlieghe, K. et al. Microarray analysis of E2Fa-DPa-overexpressing plants uncovers a cross-talking genetic network between DNA replication and nitrogen assimilation. J. Cell Sci. 116, 4249–4259 (2003).

    CAS  PubMed  Article  Google Scholar 

  39. Ramirez-Parra, E., Fründt, C. & Gutierrez, C. A genome-wide identification of E2F regulated genes in Arabidopsis. Plant J. 33, 801–811 (2003).

    CAS  PubMed  Article  Google Scholar 

  40. De Veylder, L. et al. Control of proliferation, endoreduplication and differentiation by the Arabidopsis E2Fa-DPa transcription factor. EMBO J. 21, 1360–1368 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Kosugi, S. & Ohashi, Y. Interaction of the Arabidopsis E2F and DP proteins confers their concomitant nuclear translocation and transactivation. Plant Physiol. 128, 833–843 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Del Pozo, J. C., Boniotti, M. B. & Gutierrez, C. Arabidopsis E2Fc functions in cell division and is degraded by the ubiquitin-SCF (AtSKP2) pathway in response to light. Plant Cell 14, 3057–3071 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Ramirez-Parra, E., Lopez-Matas, M. A., Fründt, C. & Gutierrez, C. Role of an atypical E2F transcription factor in the control of Arabidopsis cell growth and differentiation. Plant Cell 16, 2350–2363 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Edgar, B. A. & Orr-Weaver, T. L. Endoreplication cell cycles: more or less. Cell 105, 297–306 (2002).

    Article  Google Scholar 

  45. Kondorosi, E., Roudier, F. & Gendreau, E. Plant cell-size control: growing by ploidy? Curr. Opin. Plant Biol. 3, 488–492 (2000).

    CAS  PubMed  Article  Google Scholar 

  46. Capron, A., Okresz, L. & Genschik, P. First glance at the plant APC/C, a highly conserved ubiquitin-protein ligase. Trends Plant Sci. 8, 83–89 (2003).

    CAS  PubMed  Article  Google Scholar 

  47. Cebolla, A. et al. The mitotic inhibitor ccs52 is required for endoreduplication and ploidy-dependent cell enlargement in plants. EMBO J. 16, 4476–4484 (1999).

    Article  Google Scholar 

  48. Schnittger, A., Schobinger, U., Stierhof, Y. D. & Hulskamp, M. Ectopic B-type cyclin expression induces mitotic cycles in endoreduplicating Arabidopsis trichomes. Curr. Biol. 12, 415–420 (2002).

    CAS  PubMed  Article  Google Scholar 

  49. Capron, A. et al. The Arabidopsis anaphase-promoting complex or cyclosome: molecular and genetic characterization of the APC2 subunit. Plant Cell 15, 2370–2382 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Kwee, H. S. & Sundaresan, V. The NOMEGA gene required for female gametophyte development encodes the putative APC6/CDC16 component of the Anaphase Promoting Complex in Arabidopsis. Plant J. 36, 853–866 (2003).

    CAS  PubMed  Article  Google Scholar 

  51. Blilou, I. et al. The Arabidopsis HOBBIT gene encodes a CDC27 homolog that links the plant cell cycle to progression of cell differentiation. Genes Dev. 16, 2566–2575 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Autran, D. et al. Cell numbers and leaf development in Arabidopsis: a functional analysis of the STRUWWELPETER gene. EMBO J. 21, 6036–6039 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Sugimoto-Shirazu, K., Stacey, N. J., Corsar, J., Roberts, K. & McCann, M. C. DNA topoisomerase VI is essential for endoreduplication in Arabidopsis. Curr. Biol. 12, 1782–1786 (2002).

    Article  Google Scholar 

  54. Hartung, F. et al. An archaebacterial topoisomerase homolog not present in other eukaryotes is indispensable for cell proliferation of plants. Curr. Biol. 12, 1787–1791 (2002).

    CAS  PubMed  Article  Google Scholar 

  55. Bell, S. P. & Dutta, A. DNA replication in eukaryotic cells. Annu. Rev. Biochem. 71, 333–374 (2002).

    CAS  PubMed  Article  Google Scholar 

  56. Castellano, M. M., del Pozo, J. C., Ramirez-Parra, E., Brown, S. & Gutierrez, C. Expression and stability of Arabidopsis CDC6 are associated with endoreplication. Plant Cell 13, 2671–2686 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Castellano, M. M., Boniotti, M. B., Caro, E., Schnittger, A. & Gutierrez, C. DNA replication licensing affects cell proliferation or endoreplication in a cell type-specific manner. Plant Cell 16, 2380–2393 (2004).

    CAS  Article  Google Scholar 

  58. Del Bene, F., Tessmar-Raible, K. & Wittbrodt, J. Direct interaction of geminin and Six3 in eye development. Nature 427, 745–749 (2004).

    CAS  PubMed  Article  Google Scholar 

  59. McCormick, S. Control of male gametophyte development. Plant Cell 16, S142–S153 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Holding, D. R. & Springer, P. S. The Arabidopsis gene PROLIFERA is required for proper cytokinesis during seed development. Planta 214, 373–382 (2002).

    CAS  PubMed  Article  Google Scholar 

  61. Stevens, R. et al. A CDC45 homolog in Arabidopsis is essential for meiosis, as shown by RNA interference-induced gene silencing. Plant Cell 16, 99–113 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. Collinge, M. A., Spillane, C., Kohler, C., Gheyselinck, J. & Grossniklaus, U. Genetic interaction of an origin recognition complex subunit and the Polycomb group gene MEDEA during seed development. Plant Cell 16, 1035–1046 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. Köhler, C. et al. The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Genes Dev. 17, 1540–1553 (2003).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  64. Liu, C. M. et al. Condensin and cohesin knockouts in Arabidopsis exhibit a titan seed phenotype. Plant J. 29, 405–415 (2002).

    Article  Google Scholar 

  65. Siddiqui, N. U., Stronghill, P. E., Dengler, R. E., Hasenkampf, C. A. & Riggs, C. D. Mutations in Arabidopsis condensin genes disrupt embryogenesis, meristem organization and segregation of homologous chromosomes during meiosis. Development 130, 3283–3295 (2003).

    CAS  PubMed  Article  Google Scholar 

  66. Casimiro, I. et al. Dissecting Arabidopsis lateral root development. Trends Plant Sci. 8, 165–171 (2003).

    CAS  PubMed  Article  Google Scholar 

  67. Himanen, K. et al. Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell 14, 2339–2351 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. Himanen, K. et al. Transcript profiling of early lateral root initiation. Proc. Natl Acad. Sci. USA 101, 5146–5151 (2004).

    CAS  PubMed  Article  Google Scholar 

  69. Zuo, J., Niu, Q. W., Frugis, G. & Chua, N. H. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J. 30, 349–359 (2002).

    CAS  PubMed  Article  Google Scholar 

  70. Gallois, J. L., Nora, F. R., Mizukami, Y. & Sablowski, R. WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. Genes Dev. 18, 375–380 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. Suzuki, T. et al. A novel Arabidopsis gene TONSOKU is required for proper cell arrangement in root and shoot apical meristems. Plant J. 38, 673–684 (2004).

    CAS  PubMed  Article  Google Scholar 

  72. Harrar, Y., Bellec, Y., Bellini, C. & Faure, J. D. Hormonal control of cell proliferation requires PASTICCINO genes. Plant Physiol. 132, 1217–1227 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Sieberer, T., Hauser, M. T., Seifert, G. J. & Luschnig, C. PROPORZ1, a putative Arabidopsis transcriptional adaptor protein, mediates auxin and cytokinin signals in the control of cell proliferation. Curr. Biol. 13, 837–842 (2003).

    CAS  PubMed  Article  Google Scholar 

  74. Zhao, J. et al. Two phases of chromatin decondensation during dedifferentiation of plant cells. Distinction between competence for cell fate switch and a commitment for S-phase. J. Biol. Chem. 276, 22772–22778 (2001).

    CAS  PubMed  Article  Google Scholar 

  75. Ikeda-Iwai, M., Umehara, M., Satoh, S. & Kamada, H. Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J. 34, 107–114 (2003).

    CAS  PubMed  Article  Google Scholar 

  76. Lotan, T. et al. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93, 1195–1205 (1998).

    CAS  PubMed  Article  Google Scholar 

  77. Stone, S. L. et al. LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc. Natl Acad. Sci. USA 98, 11806–11811 (2001).

    CAS  PubMed  Article  Google Scholar 

  78. Dean Rider, S. Jr et al. Coordinate repression of regulators of embryonic identity by PICKLE during germination in Arabidopsis. Plant J. 35, 33–43 (2003).

    PubMed  Article  CAS  Google Scholar 

  79. Kaya, H. et al. FASCIATA genes for chromatin assembly factor-1 in Arabidopsis maintain the cellular organization of apical meristems. Cell 104, 131–142 (2001).

    CAS  PubMed  Article  Google Scholar 

  80. Ach, R. A., Taranto, P. & Gruissem, W. A conserved family of WD-40 proteins binds to the retinoblastoma protein in both plants and animals. Plant Cell 9, 1595–1606 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. Bracken, A. P. et al. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J. 22, 5323–5335 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. Riha, K., McKnight, T. D., Griffing, L. R. & Shippen, D. E. Living with genome instability: plant responses to telomere dysfunction. Science 291, 1797–1800 (2001).

    CAS  PubMed  Article  Google Scholar 

  83. Garcia, V. et al. AtATM is essential for meiosis and the somatic response to DNA damage in plants. Plant Cell 15, 119–132 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. Culligan, K., Tissier, A. & Britt, A. ATR regulates a G2-phase cell-cycle checkpoint in Arabidopsis thaliana. Plant Cell 16, 1091–1104 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. Lafarge, S & Montane, M. H. Characterization of Arabidopsis thaliana ortholog of the human breast cancer susceptibility gene 1: AtBRCA1, strongly induced by gamma rays. Nucleic Acids Res. 31, 1148–1155 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. Ehsan, H., Reichheld, J. P., Durfee, T. & Roe, J. L. TOUSLED kinase activity oscillates during the cell cycle and interacts with chromatin regulators. Plant Physiol. 134, 1488–1499 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. Gutierrez, C. DNA replication and cell cycle in plants: learning from geminiviruses. EMBO J. 19, 792–799 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. Beemster, G. T., Fiorani, F. & Inzé, D. Cell cycle: the key to plant growth control? Trends Plant Sci. 8, 154–158 (2003).

    CAS  PubMed  Article  Google Scholar 

  89. Boutilier, K. et al. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14, 1737–1749 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. Ausín, I., Alonso-Blanco, C., Jarillo, J. A., Ruiz-García, L. & Martínez-Zapater, J. M. Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nature Genet. 36, 162–166 (2004).

    PubMed  Article  CAS  Google Scholar 

  91. He, Y. & Amasino, R. M. Role of chromatin modifications in flowering-time control. Trends Plant Sci. 10, 30–35 (2005).

    CAS  PubMed  Article  Google Scholar 

  92. Palatnik, J., Allens, E., Wu, X., Schommer, C., Schwab, R., Carrington, J. C. & Weigel, D. Control of leaf morphogenesis by microRNAs. Nature 425, 257–263 (2003).

    CAS  PubMed  Article  Google Scholar 

  93. Vlieghe, K. et al. The DP-E2F-like gene DEL1 controls the endocycle in Arabidopsis thaliana. Curr. Biol. 15, 59–63 (2005).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

My apologies to colleagues whose work has not been cited here due to space restrictions. Thanks to many colleagues for discussions and to M. Serrano, M. A. Blasco, E. Martinez-Salas, J. A. Tercero and members of my laboratory for discussions and comments on the manuscript. Our work is supported by grants BMC2003-2131 (MCyT), MCFI-2001-00509 (EU) and 07B/053/2002 (CAM), and by an institutional grant from Fundación Ramón Areces.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gutierrez, C. Coupling cell proliferation and development in plants. Nat Cell Biol 7, 535–541 (2005). https://doi.org/10.1038/ncb0605-535

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0605-535

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing