Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Organelle identity and the organization of membrane traffic

Generating and maintaining features that distinguish one organelle from another is essential for accurate membrane traffic. Recent work has revealed that organelles express 'identity' by the local generation of activated GTP-binding proteins and lipid species. These recruiting determinants are then recognized by cytosolic proteins that facilitate the formation and delivery of vesicles at the correct compartment.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms for targeting small GTP-binding proteins to specific organelles.

References

  1. Bonifacino, J.S. & Glick, B.S. Cell 116, 153–166 (2004).

    Article  CAS  Google Scholar 

  2. Munro, S. Curr. Opin. Cell Biol. 14, 506–514 (2002).

    Article  CAS  Google Scholar 

  3. Haucke, V. Trends Cell Biol. 13, 59–60 (2003).

    Article  CAS  Google Scholar 

  4. Nemoto, Y. et al. J. Biol. Chem. 275, 34293–34305 (2000).

    Article  CAS  Google Scholar 

  5. Jackson, C.L. & Casanova, J.E. Trends Cell Biol. 10, 60–67 (2000).

    Article  CAS  Google Scholar 

  6. Chantalat, S. et al. Mol. Biol. Cell 14, 2357–2371 (2003).

    Article  CAS  Google Scholar 

  7. Garcia-Mata, R. & Sztul, E. EMBO Rep. 4, 320–325 (2003).

    Article  CAS  Google Scholar 

  8. Ortiz, D., Medkova, M., Walch-Solimena, C. & Novick, P. J. Cell Biol. 157, 1005–1015 (2002).

    Article  CAS  Google Scholar 

  9. Wang, W. & Ferro-Novick, S. Mol. Biol. Cell 13, 3336–3343 (2002).

    Article  CAS  Google Scholar 

  10. Bevis, B.J., Hammond, A.T., Reinke, C.A. & Glick, B.S. Nature Cell Biol. 4, 750–756 (2002).

    Article  CAS  Google Scholar 

  11. Lippe, R., Miaczynska, M., Rybin, V., Runge, A. & Zerial, M. Mol. Biol. Cell 12, 2219–2228 (2001).

    Article  CAS  Google Scholar 

  12. Barbieri, M.A., Kong, C., Chen, P.I., Horazdovsky, B.F. & Stahl, P.D. J. Biol. Chem. 278, 32027–32036 (2003).

    Article  CAS  Google Scholar 

  13. Tall, G.G., Barbieri, M.A., Stahl, P.D. & Horazdovsky, B.F. Dev. Cell 1, 73–82 (2001).

    Article  CAS  Google Scholar 

  14. Cremona, O. & De Camilli, P. J. Cell Sci. 114, 1041–1052 (2001).

    CAS  PubMed  Google Scholar 

  15. Krauss, M. et al. J. Cell Biol. 162, 113–124 (2003).

    Article  CAS  Google Scholar 

  16. Aikawa, Y. & Martin, T.F. J. Cell Biol. 162, 647–659 (2003).

    Article  CAS  Google Scholar 

  17. Khalfan, W.A. & Klionsky, D.J. Curr. Opin. Cell Biol. 14, 468–475 (2002).

    Article  CAS  Google Scholar 

  18. Christoforidis, S. et al. Nature Cell Biol. 1, 249–252 (1999).

    Article  CAS  Google Scholar 

  19. Murray, J.T., Panaretou, C., Stenmark, H., Miaczynska, M. & Backer, J.M. Traffic 3, 416–427 (2002).

    Article  CAS  Google Scholar 

  20. Kihara, A., Noda, T., Ishihara, N. & Ohsumi, Y. J. Cell Biol. 152, 519–530 (2001).

    Article  CAS  Google Scholar 

  21. Knodler, L.A. & Steele-Mortimer, O. Traffic 4, 587–599 (2003).

    Article  CAS  Google Scholar 

  22. Kagan, J.C. & Roy, C.R. Nat. Cell Biol. 4, 945–954 (2002).

    Article  CAS  Google Scholar 

  23. Grieshaber, S.S., Grieshaber, N.A. & Hackstadt, T. J. Cell Sci. 116, 3793–3802 (2003).

    Article  CAS  Google Scholar 

  24. Meresse, S. et al. Nat. Cell Biol. 1, E183–E188 (1999).

    Article  CAS  Google Scholar 

  25. Buttner, D. & Bonas, U. Trends Microbiol. 10, 186–192 (2002).

    Article  CAS  Google Scholar 

  26. Hardt, W.D., Chen, L.M., Schuebel, K.E., Bustelo, X.R. & Galan, J.E. Cell 93, 815–826 (1998).

    Article  CAS  Google Scholar 

  27. Gagnon, E. et al. Cell 110, 119–131 (2002).

    Article  CAS  Google Scholar 

  28. Nagai, H., Kagan, J.C., Zhu, X., Kahn, R.A. & Roy, C.R. Science 295, 679–682 (2002).

    Article  CAS  Google Scholar 

  29. Levine, T.P. & Munro, S. Curr. Biol. 12, 695–704 (2002).

    Article  CAS  Google Scholar 

  30. Mills, I.G. et al. J. Cell Biol. 160, 213–222 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Munro, S. Organelle identity and the organization of membrane traffic. Nat Cell Biol 6, 469–472 (2004). https://doi.org/10.1038/ncb0604-469

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0604-469

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing