Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis

Abstract

Mitochondria trigger apoptosis by releasing caspase activators, including cytochrome c (cytC). Here we show, using a pH-sensitive green fluorescent protein (GFP), that mitochondria-dependent apoptotic stimuli (such as Bax, staurosporine and ultraviolet irradiation) induce rapid, Bcl-2-inhibitable mitochondrial alkalinization and cytosol acidification, followed by cytC release, caspase activation and mitochondrial swelling and depolarization. These events are not induced by mitochondria-independent apoptotic stimuli, such as Fas. Activation of cytosolic caspases by cytC in vitro is minimal at neutral pH, but maximal at acidic pH, indicating that mitochondria-induced acidification of the cytosol may be important for caspase activation; this finding is supported by results obtained from cells using protonophores. Cytosol acidification and cytC release are suppressed by oligomycin, a FoF1-ATPase/H+-pump inhibitor, but not by caspase inhibitors. Ectopic expression of Bax in wild-type, but not FoF1/H+-pump-deficient, yeast cells similarly results in mitochondrial matrix alkalinization, cytosol acidification and cell death. These findings indicate that mitochondria-mediated alteration of intracellular pH may be an early event that regulates caspase activation in the mitochondrial pathway for apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Use of pH-GFPmito to estimate mitochondrial-matrix pH.
Figure 2: Mitochondrial-matrix alkalinization is an early event associated with STS-induced, but not Fas-induced, apoptosis.
Figure 3: Bcl-2 inhibits STS-induced matrix alkalinization and cytosol acidification.
Figure 4: Effects of oligomycin, mClCCP, and z–VAD–FMK on mitochondrial alkalinization and cytosol acidification induced by STS and Fas.
Figure 5: Bax expression induces mitochondrial alkalinization and cytosol acidification in human cells and yeast.
Figure 6: Analysis of mitochondrial size using mitochondria-targeted GFP.
Figure 7: pH-dependence of cytC-mediated activation of caspases.

Similar content being viewed by others

References

  1. Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/Caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 (1997).

    Article  CAS  Google Scholar 

  2. Green, D. R. & Reed, J. C. Mitochondria and apoptosis. Science 281, 1309–1312 ( 1998).

    Article  CAS  Google Scholar 

  3. Reed, J. C. Cytochrome c: can’t live with it; can’t live without it . Cell 91, 559–562 (1997).

    Article  CAS  Google Scholar 

  4. Susin, S., Zamzami, N. & Kroemer, G. Mitochondria as regulators of apoptosis: doubt no more . Biochim. Biophys. Acta. 1366, 151– 165 (1998).

    Article  CAS  Google Scholar 

  5. Bernardi, P. et al. The mitochondrial permeability transition. Biofactors 8, 273–281 ( 1998).

    Article  CAS  Google Scholar 

  6. Van der Heiden, M. G. & Thompson, C. B. Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nature Cell Biol. 1, E209–E216 (1999).

    Article  CAS  Google Scholar 

  7. Llopis, J., McCaffery, J. M., Miyawaki, A., Farquhar, M. G. & Tsien, R. Y. Measurement of cytosolic, mitochondrial and Golgi pH in single living cells with green fluorescent proteins. Proc. Natl Acad. Sci. USA 95, 6803– 6808 (1998).

    Article  CAS  Google Scholar 

  8. Petronilli, V. et al. Imaging the mitochondrial permeability transition pore in intact cells. Biofactors 8, 263– 272 (1998).

    Article  CAS  Google Scholar 

  9. Nicholls, D. G. & Ward, M. W. Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts . Trends Neurosci. 23, 166– 174 (2000).

    Article  CAS  Google Scholar 

  10. Wachter, R. M., Elsliger, M. A., Kalliio, K., Hanson, G. T. & Remington, S. J. Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein. Structure 6, 1267–1277 ( 1998).

    Article  CAS  Google Scholar 

  11. Alberts, B. et al. Molecular Biology of The Cell Vol. 1, Ch. 14 (Garland, New York & London, 1994).

  12. Bossy-Wetzel, E., Newmeyer, D. & Green, D. Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J. 17, 37–49 (1998).

    Article  CAS  Google Scholar 

  13. Macho, A. et al. Glutathione depletion is an early and calcium elevation is a late event of thymocyte apoptosis. J. Immunol. 158, 4612–4619 (1997).

    CAS  PubMed  Google Scholar 

  14. Suzuki, Y., Ono, Y. & Hirabayashi, Y. Rapid and specific reactive oxygen species generation via NADPH oxidase activation during fas-mediated apoptosis. FEBS Lett. 425, 209–212 ( 1998).

    Article  CAS  Google Scholar 

  15. Gottlieb, R., Nordberg, J., Skowronski, E. & Babior, B. Apoptosis induced in Jurkat cells by agents is preceded by intracellular acidification . Proc. Natl Acad. Sci. USA 93, 654– 658 (1996).

    Article  CAS  Google Scholar 

  16. Kluck, R. M., Bossy-Wetzel, E., Green, D. R. & Newmeyer, D. D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132 –1136 (1997).

    Article  CAS  Google Scholar 

  17. Yang, J. et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129–1132 (1997).

    Article  CAS  Google Scholar 

  18. Matsuyama, S., Xu, Q., Velours, J. & Reed, J. C. Mitochondrial F0F1-ATPase proton-pump is required for function of pro-apoptotic protein bax in yeast and mammalian cells. Mol. Cell 1, 327–336 ( 1998).

    Article  CAS  Google Scholar 

  19. Nicholls, D. & Budd, S. Mitochondria and neuronal survival . Physiol. Rev. 80, 315– 360 (2000).

    Article  CAS  Google Scholar 

  20. Leist, M., Single, B., Castoldi, A. F., Kuhnle, S. & Nicotera, P. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis . J. Exp. Med. 185, 1481– 1486 (1997).

    Article  CAS  Google Scholar 

  21. van Raaij, M. J., Abrahams, J. P., Leslie, A. G. W. & Walker, J. E. The structure of bovine F 1-ATPase complexed with the antibiotic inhibitor aurovertin B. Proc. Natl Acad. Sci. USA 93, 6913–6917 (1996).

    Article  CAS  Google Scholar 

  22. Eguchi, Y., Srinivasan, A., Tomaselli, K. J., Shimizu, S. & Tsujimoto, Y. ATP-dependent steps in apoptotic signal transduction. Cancer Res. 59, 2174 –2181 (1997).

    Google Scholar 

  23. Martin, S. J. et al. Cell-free reconstitution of Fas-, UV radiation- and ceramide-induced apoptosis. EMBO J. 14, 5191– 5200 (1995).

    Article  CAS  Google Scholar 

  24. Gross, A., McDonnell, J. & Korsmeyer, S. BCL-2 family members and the mitochondria in apoptosis . Genes Dev. 13, 1899–1911 (1999).

    Article  CAS  Google Scholar 

  25. Xiang, J., Chao, D. T. & Korsmeyer, S. J. BAX-induced cell death may not require interleukin 1β-converting enzyme-like proteases. Proc. Natl Acad. Sci. USA 93, 14559–14563 ( 1996).

    Article  CAS  Google Scholar 

  26. Arato-Oshima, T., Matsui, H., Wakizaka, A. & Homareda, H. Mechanism responsible for oligomycin-induced occlusion of Na+ within Na/K-ATPase . J. Biol. Chem. 271, 25604– 25610 (1996).

    Article  CAS  Google Scholar 

  27. Manon, S., Chaudhuri, B. & Buérin, M. Release of cytochrome c and decrease of cytochrome c oxidase in Bax-expressing yeast cells, and prevention of these effects by coexpression of Bcl-XL. FEBS Lett. 415, 29–32 (1997).

    Article  CAS  Google Scholar 

  28. Minn, J. et al. BcI-xL regulates apoptosis by heterodimerization-dependent and -independent mechanisms. EMBO J. 18, 632–643 (1999).

    Article  CAS  Google Scholar 

  29. Bernardi, P., Broekemeier, K. M. & Pfeiffer, D. R. Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane. J. Bioenerg. Biomembr. 26, 509 –517 (1994).

    Article  CAS  Google Scholar 

  30. Vaux, D. & Korsmeyer, S. Cell death in development. Cell 96, 245–254 ( 1999).

    Article  CAS  Google Scholar 

  31. Ashkenazi, A. & Dixit, V. Death receptors: signaling and modulation . Science 281, 1305–1308 (1998).

    Article  CAS  Google Scholar 

  32. Lemasters, J., DiGuiseppi, J., Nieminen, A. & Herman, B. Blebbing, free Ca2+and mitochondrial membrane potential preceding cell death in hepatocytes. Nature 325, 78 –81 (1987).

    Article  CAS  Google Scholar 

  33. Chen, Q., Takeyama, N., Brady, G., Watson, A. J. M. & Dive, C. Blood cells with reduced mitochondrial membrane potential and cytosolic cytochrome c can survive and maintain clonogenicity given appropriate signals to suppress apoptosis. Blood 92 , 4545–4553 (1998).

    CAS  PubMed  Google Scholar 

  34. Martinou, I. et al. The release of cytochrome c from mitochondria during apoptosis of NGF-deprived sympathetic neurons is a reversible event. J. Cell Biol. 144, 883–889 (1999).

    Article  CAS  Google Scholar 

  35. Rajotte, D., Haddad, P., Haman, A., Cragoe Jr., E. & Hoang, T. Role of protein kinase C and the Na+/H+ antiporter in suppression of apoptosis by granulocyte macrophage colony-stimulating factor and interleukin-3. J. Biol. Chem. 267, 9980 –9987 (1992).

    CAS  PubMed  Google Scholar 

  36. Deshmukh, M. & Johnson, J. E. Evidence of a novel event during neuronal death: development of competence-to-die in response to cytoplasmic cytochrome c. Neuron 21, 695– 705 (1998).

    Article  CAS  Google Scholar 

  37. Rosse, T. et al. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c [see comments]. Nature 391, 496– 499 (1998).

    Article  CAS  Google Scholar 

  38. Zhivotovsky, B., Orrenius, S., Brustugun, O. T. & Doskeland, S. O. Injected cytochrome c induces apoptosis. Nature 391, 449–450 (1998).

    Article  CAS  Google Scholar 

  39. Khaled, A. R., Kim, K., Hofmeister, R., Muegge, K. & Durum, S. K. Withdrawal of IL-7 induces Bax translocation from cytosol to mitochondria through a rise in intracellular pH. Proc. Natl Acad. Sci. USA 96, 14476–14481 (1999).

    Article  CAS  Google Scholar 

  40. Pérez-Sala, D., Collado-Escobar, D. & Mollinedo, F. Intracellular alkalinization suppresses Lovastatin-induced apoptosis in HL-60 cells through the inactivation of a pH-dependent endonuclease. J. Biol. Chem. 270, 6235–6242 (1995).

    Article  Google Scholar 

  41. Thangaraju, M. et al. Regulation of acidification and apoptosis by SHP-1 and Bcl-2 . J. Biol. Chem. 274, 29549– 29557 (1999).

    Article  CAS  Google Scholar 

  42. Thangaraju, M., Sharma, K., Liu, D., Shen, S-H. & Srikant, C. B. Interdependent regulation of intracellular acidification and SHP-1 in apoptosis . Cancer Res. 59, 1649– 1654 (1999).

    CAS  PubMed  Google Scholar 

  43. Marzo, I. et al. The pro-apoptotic protein Bax and the adenine nucleotide translocator cooperate in the control of mitochondrial membrane permeability and apoptosis . Science 281, 2027–2031 (1998).

    Article  CAS  Google Scholar 

  44. Matsuyama, S., Schendel, S., Xie, Z. & Reed, J. Cytoprotection by Bcl-2 requires the pore-forming α5 and α6 helices. J. Biol. Chem. 273, 30995–31001 (1998).

    Article  CAS  Google Scholar 

  45. Zha, H. et al. Structure–function comparisons of the proapoptotic protein Bax in yeast and mammalian cells. Mol. Cell. Biol. 16, 6494–6508 (1996).

    Article  CAS  Google Scholar 

  46. Velours, J. et al. The yeast ATP synthase subunit 4: structure and function. Biochimie 71, 903–915 ( 1989).

    Article  CAS  Google Scholar 

  47. Haworth, R. & Fliegel, L. Intracellular pH in Schizosaccharomyces pombe — comparison with Saccharomyces cerevisiae. Mol. Cell. Biochem. 124, 131–140 (1993).

    Article  CAS  Google Scholar 

  48. Deveraux, Q. L., Takahashi, R., Salvesen, G. S. & Reed, J. C. X-linked IAP is a direct inhibitor of cell death proteases. Nature 388, 300–304 ( 1997).

    Article  CAS  Google Scholar 

  49. Jürgensmeier, J. M. et al. Bax directly induces release of cytochrome c from isolated mitochondria. Proc. Natl Acad. Sci. USA 5, 4997– 5002 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

We thank G. Salvesen for helpful discussions and R. Cornell for manuscript preparation. This work was supported by grants from the NIH (GM 60554-01; N527177), the US Department of Defense BCRP (DAMD 17-96-1-6210), DOE (DE-AC03-7GSF-0098) and the American Heart Association (9920 070Y).

Correspondence and requests for materials should be addressed to J.C.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Reed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuyama, S., Llopis, J., Deveraux, Q. et al. Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat Cell Biol 2, 318–325 (2000). https://doi.org/10.1038/35014006

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35014006

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing