Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nucleolar Arf sequesters Mdm2 and activates p53

Abstract

The Ink4/Arf locus encodes two tumour-suppressor proteins, p16Ink4a and p19Arf, that govern the antiproliferative functions of the retinoblastoma and p53 proteins, respectively. Here we show that Arf binds to the product of the Mdm2 gene and sequesters it into the nucleolus, thereby preventing negative-feedback regulation of p53 by Mdm2 and leading to the activation of p53 in the nucleoplasm. Arf and Mdm2 co-localize in the nucleolus in response to activation of the oncoprotein Myc and as mouse fibroblasts undergo replicative senescence. These topological interactions of Arf and Mdm2 point towards a new mechanism for p53 activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Subcellular localization of p19Arf and relocalization of HDM2 in cells expressing exogenous Arf proteins.
Figure 2: Nucleolar accumulation of Arf and Mdm2 as MEFs approach replicative senescence.
Figure 3: Myc induces nucleolar accumulation of Mdm2 in an Arf-dependent manner.
Figure 4: Induction of p53 by Arf requires nucleolar recruitment of Mdm2.
Figure 5: Ectopically overexpressed p53 and Mdm2 prevent the nucleolar localization of Arf.

Similar content being viewed by others

References

  1. Quelle, D. E., Zindy, F., Ashmun, R. A. & Sherr, C. J. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83, 993–1000 (1995).

    CAS  PubMed  Google Scholar 

  2. Serrano, M., Hannon, G. J. & Beach, D. A new regulatory motif in cell cycle control causing specific inhibition of cyclin D/CDK4. Nature 366, 704–707 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Kamijo, T. et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame protein p19ARF. Cell 91, 649–659 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  4. Zindy, F. et al. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 12, 2424–2433 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. De Stanchina, E. et al. E1A signaling to p53 involves the p19ARF tumor suppressor. Genes Dev. 12, 2434– 2442 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bates, S. et al. E2F-1 regulation of p14ARF links pRB and p53. Nature 395, 124–125 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  7. Palmero, I., Pantoja, C. & Serrano, M. p19ARF links the tumour suppressor p53 to Ras. Nature 395, 125–126 (1998).

  8. Radfar, A., Unnikrishnan, I., Lee, H-W., DePinho, R. A. & Rosenberg, N. p19ARF induces p53-dependent apoptosis during Abelson virus-mediated pre-B cell transformation. Proc. Natl Acad. Sci. USA 95, 13194–13199 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Giaccia, A. J. & Kastan, M. B. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 12, 2973–2983 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Sherr, C. J. Tumor surveillance via the ARF-p53 pathway. Genes Dev. 12, 2984-2991 (1998).

    Article  Google Scholar 

  11. Prives, C. Signaling to p53: breaking the MDM2-p53 circuit. Cell 95, 5–8 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Serrano, M. et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell 85, 27– 37 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Alcorta, D. A. et al.Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc. Natl Acad. Sci. USA 93, 13742–13747 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hara, E. et al. Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence. Mol. Cell. Biol. 16, 859–867 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Zindy, F., Quelle, D. E., Roussel, M. F. & Sherr, C. J. Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene 15, 203–211 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Pomerantz, J. et al. The Ink4a tumor suppressor gene product, p19ARF, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 92, 713–723 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, Y., Xiong, Y. & Yarbrough, W. G. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppressor pathways. Cell 92, 725– 734 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Kamijo, T. et al. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc. Natl Acad. Sci. USA 95, 8292–8297 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stott, F. et al. The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2. EMBO J. 17, 5001–5014 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Momand, J., Zambetti, G. P., Olson, D. C., George, D. & Levine, A. J. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69, 1237–1245 ( 1992).

    Article  CAS  PubMed  Google Scholar 

  22. Oliner, J. D. et al. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362, 857– 860 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Roth, J., Dobbelstein, M., Freedman, D., Shenk, T. & Levine, A. J. Nucleocytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J. 17, 554–564 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Freedman, D. A. & Levine, A. J. Nuclear export is required for degradation of endogenous p53 by mdm2 and human papillomavirus E6. Mol. Cell. Biol. 18, 7288– 7293 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Honda, R., Tanaka, H. & Yasuda, H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 420, 25– 27 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Honda, R. & Yasuda, H. Association of p19ARF with Mdm2 inhibits ubiquitin ligase activity of MDM2 for tumor suppressor p53. EMBO J. 18, 22–27 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Quelle, D. E., Cheng, M., Ashmun, R. A. & Sherr, C. J. Cancer-associated mutations at the INK4a locus cancel cell cycle arrest by p16INK4a but not by the alternative reading frame protein p19ARF. Proc. Natl Acad. Sci. USA 94, 3436–3440 (1997).

    Article  Google Scholar 

  28. Scheer, U., Thiry, M. & Goessens, G. Structure, function, and assembly of the nucleolus. Trends Cell Biol. 3, 236–241 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Fomproix, N., Gebrane-Younes, J. & Hernandez-Verdun, D. Effects of anti-fibrillarin antibodies on building of functional nucleoli at the end of mitosis. J. Cell Sci. 111, 359–372 ( 1998).

    CAS  PubMed  Google Scholar 

  30. Montes de Oca Luna, R., Wagner, D. S. & Lozano, G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378, 203 –206 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Jones, S. N., Roe, A. E., Donehower, L. A. & Bradley, A. Rescue of embryonic lethality in Mdm-2-deficient mice by absence of p53. Nature 378, 206–208 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  32. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296 –299 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Kubbutat, M. H., Jones, S. N. & Vousden, K. H. Regulation of p53 stability by Mdm2. Nature 387, 299–303 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  34. Shieh, S.-Y., Ikeda, M., Taya, Y. & Prives, C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91, 325–334 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Siliciano, J. D. et al. Damage induces phosphorylation of the amino terminus of p53 . Genes Dev. 11, 3471–3481 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Littlewood, T. D., Hancock, D. C., Danielian, M. G., Parker, M. G., & Evan, G. I. A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res. 23, 1686–1690 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McCarthy, S. A., Aziz, N. & McMahon, M. Identification of immediate-early gene targets of the Raf-1 serine/threonine protein kinase using an estradiol-dependent fusion protein, delta Raf-1:ER. Methods Mol. Biol. 85, 137–151 (1997).

    CAS  PubMed  Google Scholar 

  38. Ochs, R. L., Lischwe, M. A., Spohn, W. H., & Busch, H. Nucleologenesis: composition and fate of prenucleolar bodies. Biol. Cell 54, 123-134 (1985).

    Article  Google Scholar 

  39. Chen, C. & Okayama, H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7, 2745–2752 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. J. Levine and Y. Xiong for communicating unpublished results; G. Lozano for MEFs lacking both Mdm2 and p53; F. Zindy for MEFs of different genotypes and passage levels; G. Zambetti and P. Tegtmeyer for HDM2 and p53 expression plasmids, and for the 2A10 monoclonal antibody to Mdm2; and R. Matthew and E. Van de Kamp for technical assistance. C.J.S is an Investigator of the Howard Hughes Medical Institute. D.B.-S and M.F.R acknowledge grant support from the NIH.

Correspondence and requests for materials should be addressed to C.J.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles J. Sherr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, J., Taylor, L., Roussel, M. et al. Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol 1, 20–26 (1999). https://doi.org/10.1038/8991

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/8991

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing