Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

When domestiques rebel: kinesins, cadherins and neuronal proliferation

Conditional knockout of the KAP3 subunit from the kinesin motor KIF3 alters tissue patterning and causes abnormal proliferation of neural progenitor cells in the mouse brain. Impaired transport of N-cadherin to the surface of these cells may be one explanation for how such defects arise.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Possible mechanisms by which KIF3-mediated transport might regulate neuronal patterning and proliferation.

References

  1. Teng, J. et al. Nature Cell Biol. 7, 474–482 (2005).

    Article  CAS  Google Scholar 

  2. Mandelkow, E. & Mandelkow, E.-M. Trends Cell Biol. 12, 585–591 (2002).

    Article  CAS  Google Scholar 

  3. Hirokawa, N. Traffic 1, 29–34 (2000).

    Article  CAS  Google Scholar 

  4. Bryant, D. M. & Stow, J. L. Trends Cell Biol. 14, 427–434 (2004).

    Article  CAS  Google Scholar 

  5. Steinberg, M. S. & Takeichi, M. Proc. Natl Acad. Sci. USA 91, 206–209 (1994).

    Article  CAS  Google Scholar 

  6. Godt, D. & Tepass, U. Nature 395, 387–391 (1998).

    Article  CAS  Google Scholar 

  7. Watabe, M., Nagafuchi, A., Tsukita, S. & Takeichi, M. J. Cell Biol. 127, 247–256 (1994).

    Article  CAS  Google Scholar 

  8. Gottardi, C. J., Wong, E. & Gumbiner, B. M. J. Cell Biol. 153, 1049–1060 (2001).

    Article  CAS  Google Scholar 

  9. Logan, C. Y. & Nusse, R. Annu. Rev. Cell Dev. Biol. 20, 781–810 (2004).

    Article  CAS  Google Scholar 

  10. van de Wetering, M. et al. Cell 111, 241–250 (2002).

    Article  CAS  Google Scholar 

  11. Chenn, A. & Walsh, C. A. Science 297, 365–369 (2002).

    Article  CAS  Google Scholar 

  12. He, T. C. et al. Science 281, 1509–1512 (1998).

    Article  CAS  Google Scholar 

  13. Heasman, J. et al. Cell 79, 791–803 (1994).

    Article  CAS  Google Scholar 

  14. Cox, R. T., Kirkpatrick, C. & Peifer, M. J. Cell Biol. 134, 133–148 (1996).

    Article  CAS  Google Scholar 

  15. Wahl, J. K. III, Kim, Y. J., Cullen, J. M., Johnson, K. R. & Wheelock, M. J. J. Biol. Chem. 278, 17269–17276 (2003).

    Article  CAS  Google Scholar 

  16. Gottardi, C. J. & Gumbiner, B. M. J. Cell Biol. 167, 339–349 (2004).

    Article  CAS  Google Scholar 

  17. Qian, X., Karpova, T., Sheppard, A. M., McNally, J. & Lowy, D. R. EMBO J. 23, 1739–1784 (2004).

    Article  CAS  Google Scholar 

  18. Bryant, D. M., Wylie, F. G. & Stow, J. L. Mol. Biol. Cell 16, 14–23 (2005).

    Article  CAS  Google Scholar 

  19. Bilder, D. Genes Dev. 18, 1909–1925 (2004).

    Article  CAS  Google Scholar 

  20. Nishimura, T. et al. Nature Cell Biol. 6, 328–334 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gottardi, C., den Elzen, N. & Yap, A. When domestiques rebel: kinesins, cadherins and neuronal proliferation. Nat Cell Biol 7, 445–447 (2005). https://doi.org/10.1038/ncb0505-445

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0505-445

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing