Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

WIP regulates N-WASP-mediated actin polymerization and filopodium formation

Abstract

Induction of filopodia is dependent on activation of the small GTPase Cdc42 and on neural Wiskott–Aldrich-syndrome protein (N-WASP). Here we show that WASP-interacting protein (WIP) interacts directly with N-WASP and actin. WIP retards N-WASP/Cdc42-activated actin polymerization mediated by the Arp2/3 complex, and stabilizes actin filaments. Microinjection of WIP into NIH 3T3 fibroblasts induces filopodia; this is inhibited by microinjection of anti-N-WASP antibody. Microinjection of anti-WIP antibody inhibits induction of filopodia by bradykinin, by an active Cdc42 mutant (Cdc42(V12)) and by N-WASP. Our results indicate that WIP and N-WASP may act as a functional unit in filopodium formation, which is consistent with their role in actin-tail formation in cells infected with vaccinia virus or Shigella.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interaction of WIP and N-WASP.
Figure 2: In vitro interaction of WIP, N-WASP and Cdc42.
Figure 3: Binding of WIP to G- and F-actin.
Figure 4: Effect of WIP on N-WASP-induced activation of the Arp2/3 complex.
Figure 5: Effect of WIP on disassembly of actin filaments.
Figure 6: WIP induces filopodium formation and localizes to filopodia after bradykinin stimulation.
Figure 7: WIP and N-WASP act as a unit in filopodium formation.
Figure 8: WIP is a component of the bradykinin pathway.

Similar content being viewed by others

References

  1. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–513 (1998).

    Article  CAS  Google Scholar 

  2. Derry, J. M. J., Ochs, H. D. & Francke, U. Isolation of a novel gene mutated in Wiskott–Aldrich syndrome. Cell 78, 635–644 (1994).

    Article  CAS  Google Scholar 

  3. Miki, H., Miura, K. & Takenawa, T. N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. EMBO J. 15, 5326–5335 (1996).

    Article  Google Scholar 

  4. Miki, H., Sasaki, T., Takai, Y. & Takenawa, T. Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Nature 391, 93–96 (1998).

    Article  CAS  Google Scholar 

  5. Haddad, E. et al. The thrombocytopenia of Wiskott–Aldrich syndrome is not related to a defect in proplatelet formation. Blood 94, 509–518 (1999).

    CAS  Google Scholar 

  6. Linder, S., Nelson, D. & Aepfelbacher, M. Wiskott–Aldrich syndrome protein regulates podosomes in primary human macrophages. Proc. Natl Acad. Sci. USA 96, 9648–9653 (1999).

    Article  CAS  Google Scholar 

  7. Rohatgi, R., Ho, H. H. & Kirschner, M. W. Mechanism of N-WASP activation by Cdc42 and phosphatidylinositol 4,5-bisphosphate. J. Cell Biol. 150, 1299–1309 (2000).

    Article  CAS  Google Scholar 

  8. Mullins, R. D., Heuser, J. A. & Pollard, T. D. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl Acad. Sci. USA 95, 6181–6186 (1998).

    Article  CAS  Google Scholar 

  9. Machesky, L. & Insall, R. Scar1 and the related Wiskott–Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr. Biol. 8, 1347–1356 (1998).

    Article  CAS  Google Scholar 

  10. Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231 (1999).

    Article  CAS  Google Scholar 

  11. Higgs, H. N. & Pollard, T. D. Activation by Cdc42 and PIP2 of Wiskott–Aldrich syndrome protein (WASp) stimulates actin nucleation by Arp2/3 complex. J. Cell Biol. 150, 1311–1320 (2000).

    Article  CAS  Google Scholar 

  12. Symons, M. et al. Wiskott–Aldrich syndrome protein, a novel effector for the GTPase Cdc42Hs, is implicated in actin polymerization. Cell 84, 723–734 (1996).

    Article  CAS  Google Scholar 

  13. Castellano, F. et al. Inducible recruitment of cdc42 or WASP to a cell-surface receptor triggers actin polymerization and filopodium formation. Curr. Biol. 9, 351–360 (1999).

    Article  CAS  Google Scholar 

  14. Ramesh, N., Anton, I. M., Hartwig, J. H. & Geha, R. S. WIP, a protein associated with the Wiskott–Aldrich syndrome protein, induces actin polymerization and redistribution in lymphoid cells. Proc. Natl Acad. Sci. USA 94, 14671–14676 (1997).

    Article  CAS  Google Scholar 

  15. Vaduva, G. et al. The human WASP-interacting protein,WIP, activates the cell polarity pathway in yeast. J. Biol. Chem. 274, 17103–17108 (1999).

    Article  CAS  Google Scholar 

  16. Moreau, V. et al. A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nature Cell Biol. 2, 441–448 (2000).

    Article  CAS  Google Scholar 

  17. Anton, I., Lu, W., Mayer, B. J., Ramesh, N. & Geha, R. S. The Wiskott–Aldrich syndrome protein interacting protein (WIP) binds to the adaptor protein Nck. J. Biol. Chem. 273, 20992–20995 (1998).

    Article  CAS  Google Scholar 

  18. Gertler, F. B., Niebuhr, K., Reinhard, M., Wehland, J. & Soriano, P. Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. Cell 87, 227–239 (1996).

    Article  CAS  Google Scholar 

  19. Vaduva, G., Martin, N. & Hopper, A. K. Actin-binding verprolin is a polarity development protein required for the morphogenesis and function of the yeast actin cytoskeleton. J. Cell Biol. 139, 1821–1833 (1997).

    Article  CAS  Google Scholar 

  20. van Troys, M. et al. The actin binding site of thymosin β4 mapped by mutational analysis. EMBO J. 15, 201–210 (1996).

    Article  CAS  Google Scholar 

  21. Roy, C., Martin, M. & Mangeat, P. A Dual involvement of the amino-terminal domain of ezrin in F- and G-actin binding. J. Biol. Chem. 272, 20088–20095 (1997).

    Article  CAS  Google Scholar 

  22. Freeman, J. L. R., De La Cruz, E. M., Pollard, T. D., Lefkowitz, R. J. & Pitcher, J. A. Regulation of G protein-coupled receptor kinase 5 (GRK5) by actin. J. Biol. Chem. 273, 20653–20657 (1998).

    Article  CAS  Google Scholar 

  23. Hitchcock-DeGregori, S. E., Sampath, P. & Pollard, T. D. Tropomyosin inhibits the rate of actin polymerization by stabilizing actin filaments. Biochemistry 27, 9182–9185 (1988).

    Article  CAS  Google Scholar 

  24. Cano, M. L., Cassimeris, L., Fechheimer, F. & Zigmond, S. H. Mechanisms responsible for F-actin stabilization after lysis of polymorphonuclear leukocytes. J. Cell Biol. 116, 1123–1134 (1992).

    Article  CAS  Google Scholar 

  25. Lehman, W., Vibert, P. & Craig, R. Visualization of caldesmon on smooth muscle thin filaments. J. Mol. Biol. 274, 310–317 (1997).

    Article  CAS  Google Scholar 

  26. Kozma, R., Ahmed, S., Best, A. & Lim, L. The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss NIH 3T3 fibroblasts. Mol. Cell. Biol. 15, 1942–1952 (1995).

    Article  CAS  Google Scholar 

  27. Kim, A. S., Kakalis, L. T., Abdul-Manan, N., Liu, G. A. & Rosen, M. K. Autoinhibition and activation mechanisms of the Wiskott–Aldrich syndrome protein. Nature 404, 151–158 (2000).

    Article  CAS  Google Scholar 

  28. Egile, C. et al. Activation of the Cdc42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by the Arp2/3 complex and bacterial actin-based motility. J. Cell Biol. 146, 1319–1332 (1999).

    Article  CAS  Google Scholar 

  29. Evangelista, M. et al. A role for myosin-I in actin assembly through interactions with Vrp1p, Bee1p, and the Arp2/3 complex. J. Cell Biol. 148, 353–362 (2000).

    Article  CAS  Google Scholar 

  30. Yang, C. et al. Profilin enhances Cdc42-induced nucleation of actin polymerization. J. Cell Biol. 150, 1001–1012 (2000).

    Article  CAS  Google Scholar 

  31. Geli, M. I., Lombardi, R., Schmelzl, B. & Riezman, H. An intact SH3 domain is required for myosin I-induced actin polymerization. EMBO J. 19, 4281–4291 (2000).

    Article  CAS  Google Scholar 

  32. Hartwig, J. H. & DeSisto, M. The cytoskeleton of the resting human blood platelet: structure of the membrane skeleton and its attachment to actin filaments. J. Cell Biol. 112, 407–425 (1991).

    Article  CAS  Google Scholar 

  33. Spudich, J. & Watt, S. The regulatin of rabbit skeletal muscle contraction I. Biochemical studies of the interaction of tropomyosin–troponin complex with actin and the proteolytic fragments of myosin. J. Biol. Chem. 246, 4866–4871 (1971).

    CAS  Google Scholar 

  34. Casella, J., Barron-Casella, E. & Torres, M. Quantitation of CapZ in conventional actin preparations and methods for further purification of actin. Cell Motil. Cytoskel. 30, 164–170 (1995).

    Article  CAS  Google Scholar 

  35. Hartwig, J. H. et al. Thrombin receptor ligation and activated rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell 82, 643–653 (1995).

    Article  CAS  Google Scholar 

  36. Pollard, T. D. Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J. Cell Biol. 103, 2747–2754 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Manoukian and M. Byrne for technical help, A. Hall for help with microinjections, M. Kirschner and L. Ma for discussions and reagents, and K. Barkalow for help with video microscopy. This work was supported by grants from the NIH, the March of Dimes and the Baxter, Olsten and Centeon Corporations. N.M-Q. is supported by a MEC postdoctoral grant, I.M.A. is supported by a Lady Tata fellowship, and R.R. is a member of the Medical Scientist Training Program at Harvard Medical School.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raif S. Geha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez-Quiles, N., Rohatgi, R., Antón, I. et al. WIP regulates N-WASP-mediated actin polymerization and filopodium formation. Nat Cell Biol 3, 484–491 (2001). https://doi.org/10.1038/35074551

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35074551

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing