Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The transcriptional role of PML and the nuclear body

Abstract

The PML gene encodes a tumour suppressor protein associated with a distinct subnuclear domain, the nuclear body. Various functions have been attributed to the PML nuclear body, but its main biochemical role is still unclear. Recent findings indicate that PML is essential for the proper formation of the nuclear body and can act as a transcriptional co-factor. Here we summarize the current understanding of the biological functions of PML and the nuclear body, and discuss a role for these intra-nuclear structures in the regulation of transcription.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PML and nuclear body.
Figure 2: SUMOylated PML is required for the proper formation of nuclear body.
Figure 3: Models of nuclear body-regulated transcription.

Similar content being viewed by others

References

  1. Pandolfi, P. P. et al. Structure and origin of the acute promyelocytic leukaemia myl/RARalpha cDNA and characterization of its retinoid-binding and transactivation properties. Oncogene 6, 1285– 1292 (1991).

    CAS  PubMed  Google Scholar 

  2. de Thé, H. et al. The PML/RARalpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukaemia encodes a functionally altered RAR. Cell 66, 675–684 (1991).

    Article  PubMed  Google Scholar 

  3. Goddard, A. D., Borrow, P. S., Freemont, P. S. & Solomon, E. Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukaemia. Science 254, 1371 –1374 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Kakizuka, A. et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukaemia fuses RARalpha with a novel putative transcription factor, PML. Cell 66, 663–674 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Melnick, A. & Licht, J. D. Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukaemia. Blood 93, 3167– 3215 (1999).

    CAS  PubMed  Google Scholar 

  6. He, L. Z., Merghoub, T. & Pandolfi, P. P. In vivo analysis of the molecular pathogenesis of acute promyelocytic leukaemia in the mouse and its therapeutic implications . Oncogene 18, 5278–5292 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Sternsdorf, T., Grotzinger, T., Jensen, K. & Will, H. Nuclear dots: actors on many stages. Immunobiology 198, 307–331 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Bouteille, M., Laval, M. & Dupuy-Coin, A. M. in The Cell Nucleus (ed. Busch, H)5–64 (Academic Press, New York, 1974).

  9. Ascoli, C. A. & Maul, G. G. Identification of a novel nuclear domain. J. Cell. Biol. 112, 785– 765 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Dyck, J. et al. A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell 76, 333– 343 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Koken, M. H. M. et al. The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. EMBO J. 13, 1073 –1083 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weis, K. et al. Retinoic acid regulates aberrant nuclear localization of PML-RARalpha in acute promyelocytic leukemic cells. Cell 76, 345–356 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Hodges, M., Tissot, C., Howe, K., Grimwade, D. & Freemont, P. S. Structure, organization, and dynamics of promyelocytic leukaemia protein nuclear bodies. Am. J. Hum. Genet. 63, 297–304 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maul, G. G. Nuclear domain 10, the site of DNA virus transcription and replication. Bioessays 20, 660–667 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Scheer, U. & Weisenberger, D. The nucleolus. Curr. Opin. Cell Biol. 6, 354–359 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Koken, M. H. et al. The PML growth-suppressor has an altered expression in human oncogenesis. Oncogene 10, 1315– 1324 (1995).

    CAS  PubMed  Google Scholar 

  17. LaMorte, V. J., Dyck, J. A., Ochs, R. L. & Evans, R. M. Localization of nascent RNA and CREB binding protein with the PML-containing nuclear body . Proc. Natl Acad. Sci. USA 95, 4991– 4996 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alcalay, M. et al. The promyelocytic leukaemia gene product (PML) forms stable complexes with the retinoblastoma protein. Mol. Cell. Biol. 18, 1084–1093 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhong, S. et al. A role for PML and the nuclear body in genomic stability. Oncogene 18, 7941–7947 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Zhong, S. et al. PML and Daxx participate in a novel nuclear pathway for apoptosis . J. Exp. Med. 191, 631– 640 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, Y. & Xiong, Y. Mutations in human ARF exon 2 disrupt its nucleolar localization and impairs its ability to block nuclear export of MDM 2 and p53. Mol. Cell 3, 579– 591 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Ishov, A. M. et al. PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J. Cell Biol. 147, 221–234 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhong, S., Muller, S., Freemont, P. S., Dejean, A. & Pandolfi, P. P. Role of SUMO-1 modified PML in nuclear body formation. Blood (in the press).

  24. Boddy, M. N., Howe, K., Etkin, L. D., Solomon, E. & Freemont, P. S. PIC1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene 13, 971 –982 (1996).

    CAS  PubMed  Google Scholar 

  25. Müller, S., Matunis, M. J. & Dejean, A. Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J. 17, 61–70 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kamitani, T. et al. Identification of three major sentrinization sites in PML . J. Biol. Chem. 273, 26675– 26682 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Matunis, M. J., Wu, J. & Blobel, G. SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J. Cell Biol. 140, 499–509 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Saitoh, H. & Hinchey, J. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J. Biol. Chem. 275, 6252–6258 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Sternsdorf, T., Jensen, K. & Will, H. Evidence for covalent modification of the nuclear dot-associated proteins PML and Sp100 by PIC1/SUMO-1. J. Cell Biol. 139, 1621–1634 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sternsdorf, T., Jensen, K., Reich, B. & Will, H. The nuclear dot protein Sp100, characterization of domains necessary for dimerization, subcellular localization, and modification by small ubiquitin-like modifiers. J. Biol. Chem. 274, 12555–12566 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Li, S. J. & Hochstrasser, M. A new protease required for cell-cycle progression in yeast. Nature 398, 246–251 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Gong, L., Millas, S., Maul, G. G. & Yeh, E. T. Differential regulation of sentrinized proteins by a novel sentrin-specific protease. J. Biol. Chem. 275, 3355–3359 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Freemont, P. S., Hanson, I. M. & Trowsdale, J. A novel cysteine-rich sequence motif. Cell 64, 483–484 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Borden, K. L. B. & Freemont, P. S. The RING finger domain: a recent example of a sequence-structure family. Curr. Opin. Struct. Biol. 6, 395–401 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Kastner, P. et al. Structure, localization and transcriptional properties of two classes of retinoic acid receptor alpha fusion proteins in acute promyelocytic leukaemia (APL): structural similarities with a new family of oncoproteins . EMBO J. 11, 629–642 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Perez, A. et al. PML/RAR homodimers: distinct DNA binding properties and heteromeric interactions with RAR. EMBO J. 12, 3171– 3182 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Borden, K. L. B. et al. The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto-oncoprotein PML. EMBO J. 14, 1532–1541 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lavau, C. et al. The acute promyelocytic leukaemia-associated PML gene is induced by interferon. Oncogene 11, 871– 876 (1995).

    CAS  PubMed  Google Scholar 

  39. Gaboli, M., Gandini, D., Delva, L., Wang, Z. G. & Pandolfi, P. P. Acute promyelocytic leukaemia as a model for cross-talk between interferon and retinoic acid pathways: from molecular biology to clinical applications. Leuk. Lymph. 30, 11– 22 (1998).

    Article  CAS  Google Scholar 

  40. Ishov, A. M. & Maul, G. G. The periphery of nuclear domain 10 (ND10) as site of DNA virus deposition. J. Cell Biol. 134, 815–826 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Everett, R. G., Meredith, M. & Orr, A. The ability of herpes simplex virus type 1 immediate-early protein Vmw110 to bind to a ubiquitin-specific protease contributes to its roles in the activation of gene expression and stimulation of virus replication . J. Virol. 73, 417–426 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mueller, S. & Dejean, A. Viral immediate-early proteins abrogate the modification by SUMO-1 of PML and Sp100 proteins, correlating with nuclear body disruption. J. Virol. 73,(1999).

  43. Chelbi-Alix, M. K., Quignon, F., Pelicano, L., Koken, M. H. M. & de The, H. Resistance to virus infection conferred by the interferon-induced promyelocytic leukaemia protein. J. Virol. 72, 1043–1051 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Everett, R. D., Orr, A. & Preston, C. M. A viral activator of gene expression functions via the ubiquitin-proteasome pathway. EMBO J. 17, 7161–7169 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ahn, J. H. & Hayward, G. S. The major immediate-early proteins IE1 and IE2 of human cytomegalovirus colocalize with and disrupt PML-associated nuclear bodies at very early times in infected permissive cells. J. Virol. 71, 4599–4613 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Szekely, L. et al. The Epstein-Barr virus-encoded nuclear antigen EBNA-5 accumulates in PML-containing bodies. J. Virol. 70, 2562–2568 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Swindle, C. S. et al. Human papillomavirus DNA replication compartments in a transient DNA replication system. J. Virol. 73, 1001 –1009 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Stadler, M. et al. Transcriptional induction of the PML growth suppressor gene by interferons is mediated through an ISRE and GAS element. Oncogene 11, 2565–2573 (1995).

    CAS  PubMed  Google Scholar 

  49. Guldner, H. H., Szostecki, C., Grotzinger, T. & Will, H. IFN enhance expression of Sp100, an autoantigen in primary biliary cirrhosis . J. Immunol. 149, 4067– 4073 (1992).

    CAS  PubMed  Google Scholar 

  50. Gongora, C. et al. Molecular cloning of a new interferon-induced PML nuclear body-associated protein. J. Biol. Chem. 272, 19457–19463 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Terris, B. et al. PML nuclear bodies are general targets for inflammation and cell proliferation. Cancer. Res. 55, 1590 –1597 (1995).

    CAS  PubMed  Google Scholar 

  52. Wang, Z. G. et al. Role of PML in cell growth and the retinoic acid pathway. Science 279, 1547–1551 (1998).

  53. Zheng, P. et al. Proto-oncogene PML controls genes devoted to MHC class I antigen presentation. Nature 396, 373– 376 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Larghero, J., Zassadowski, F., Rousselot, P. & Padua, R. A. Alteration of the PML proto-oncogene in leukemic cells does not abrogate expression of MHC class I antigens. Leukaemia 13, 1295 –1296 (1999).

    Article  CAS  Google Scholar 

  55. Wang, Z.-G. et al. Pml is essential for multiple apoptotic pathways. Nature Genet. 20, 266–271 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Borden, K. L., Campbell Dwyer, E. J. & Salvato, M. S. The promyelocytic leukaemia protein PML has a pro-apoptotic activity mediated through its RING domain. FEBS Lett. 418, 30–34 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Quignon, F. et al. PML induces a novel caspase-independent death process. Nature Genet. 20, 259–265 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Fagioli, M. et al. Cooperation between the RING + B1-B2 and coiled-coil domains of PML is necessary for its effects on cell survival. Oncogene 16, 2905–2913 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Torii, S., Egan, D. A., Evans, R. A. & Reed, J. C. Human Daxx regulates Fas-induced apoptosis from nuclear PML oncogenic domains (PODs). EMBO J. 18, 6037– 6049 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li, H. et al. Sequestration and inhibition of daxx-mediated transcriptional repression by PML. Mol. Cell. Biol. 20, 1784– 1796 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mu, Z. M., Chin, K. V., Liu, J. H., Lozano, G. & Chang, K. S. PML, a growth suppressor disrupted in acute promyelocytic leukaemia. Mol. Cell. Biol. 14, 6858– 6867 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Le, X. F., Yang, P. & Chang, K. S. Analysis of the growth and transformation suppressor domain of promyelocytic leukaemia gene, PML. J. Biol. Chem. 271, 130–135 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Ellis, N. A. et al. The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell 83, 655– 666 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. Ellis, N. A. & German, J. Molecular genetics of Bloom’s syndrome. Hum. Mol. Genet. 5, 1457– 1463 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Miki, Y. et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266, 66– 71 (1994).

    Article  CAS  PubMed  Google Scholar 

  66. Welsch, P. L., Owens, K. N. & King, M. C. Insights into the functions of BRCA1 and BRCA 2. Trends Genet. 16, 69–74 (2000).

    Article  Google Scholar 

  67. Ahn, J. H., Brignole, E. J. r. & Hayward, G. S. Disruption of PML subnuclear domains by the acidic IE1 protein of human cytomegalovirus is mediated through interaction with PML and may modulate a RING finger-dependent cryptic transactivator function of PML. Mol. Cell. Biol. 18, 4899– 4913 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vallian, S. et al. Transcriptional repression by the promyelocytic leukaemia protein, PML. Exp. Cell. Res. 237, 371– 382 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Rachez, C. et al. Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex. Nature 398, 824 –828 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Naar, A. M. et al. Composite co-activator ARC mediates chromatin-directed transcriptional activation. Nature 398, 828– 832 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Fondell, J. D., Ge, H. & Roeder, R. G. Ligand induction of a transcriptionally active thyroid hormone receptor co-activator complex. Proc. Natl Acad. Sci. USA 93, 8329–8333 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhong, S. et al. A retinoic acid-dependent tumour-growth suppressive transcription complex is the target of the PML-RARα and T 18 oncoproteins. Nat. Genet. 23, 287–295 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Doucas, V., Tini, M., Egan, D. A. & Evans, R. M. Modulation of CREB binding protein function by the promyelocytic (PML) oncoprotein suggests a role for nuclear bodies in hormone signaling. Proc. Natl Acad. Sci. USA 96, 2627–2632 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Guiochon-Mantel, A. et al. Effect of PML and PML-RAR on the transactivation properties and subcellular distribution of steroid hormone receptors. Mol. Endocrinol. 9, 1791–1803 (1995).

    CAS  PubMed  Google Scholar 

  75. Vallian, S. et al. Modulation of Fos-mediated AP-1 transcription by the promyelocytic leukaemia protein. Oncogene 16, 2843– 2853 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Vallian, S., Chin, K. V. & Chang, K. S. The promyelocytic leukaemia protein interacts with Sp1 and inhibits its transactivation of the epidermal growth factor receptor promoter. Mol. Cell. Biol. 18, 7147– 7156 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Doucas, V. & Evans, R. M. Human T-cell leukaemia retrovirus-Tax protein is a repressor of nuclear receptor signaling. Proc. Natl Acad. Sci. USA 96, 2633–2638 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jiang, W. Q., Szekely, L., Klein, G. & Ringertz, N. Intranuclear redistribution of SV 40T, p53, and PML in a conditionally SV 40T-immortalized cell line. Exp. Cell Res. 229, 289– 300 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Lain, S., Midgley, C., Sparks, A., Lane, E. B. & Lane, D. P. An inhibitor of nuclear export activates the p53 response and induces the localization of HDM 2 and p53 to U 1A–positive nuclear bodies associated with the PODs. Exp. Cell Res. 248 , 457–472 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Gostissa, M. et al. Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J. 18, 6462– 6471 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rodriguez, M. S. et al. SUMO-1 modification activates the transcriptional response of p53. EMBO J. 18, 6455– 6461 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chakravati, D. et al. Role of CBP/P300 in nuclear receptor signalling. Nature 383, 99–103 (1996).

    Article  Google Scholar 

  83. Bannister, A. J. & Kouzarides, T. The CBP co-activator is a histone acetyltransferase. Nature 384, 641–643 (1996).

    Article  CAS  PubMed  Google Scholar 

  84. Boyes, J., Byfield, P., Nakatani, Y. & Ogryzko, V. Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 396(1998).

  85. Blobel, G. A., Nakajima, T., Eckner, R., Montminy, M. & Orkin, S. H. CREB-binding protein cooperates with transcription factor GATA-1 and is required for erythroid differentiation. Proc. Natl Acad. Sci. USA 95, 2061–2066 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang, W. & Bieker, J. J. Acetylation and modulation of erythroid Kruppel-like factor (EKLF) activity by interaction with histone acetyltransferases. Proc. Natl Acad. Sci. USA 95, 9855–9860 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Remboutsika, E. et al. The putative nuclear receptor mediator TIF1alpha is tightly associated with euchromatin. J. Cell Sci. 112, 1671–1683 (1999).

    CAS  PubMed  Google Scholar 

  88. Johnson, F. B. & al., e. Association of the Bloom Syndrome protein with Topoisomerase IIIalpha in somatic and meiotic cells. Cancer Res. (in the press).

  89. Lai, H.-K. & Borden, K. L. B. The promyelocytic leukaemia (PML) protein suppresses cyclin D 1 protein production by altering the nuclear cytoplasmic distribution of cyclin D 1 mRNA. Oncogene (in the press).

  90. Asano, K., Merrick, W. C. & Hershey, J. W. The translation initiation factor eIF 3-p 48 subunit is encoded by int-6, a site of frequent integration by the mouse mammary tumour virus genome. J. Biol. Chem. 272, 23477– 23480 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Everett, R. D. et al. A novel ubiquitin-specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein . EMBO J. 16, 1519–1530 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Seeler, J.S., Marchio, A., Sitterling, D., Transy, C. & Dejean, A. Interaction of Sp100 with HP 1 proteins: a link between the promyelocytic leukaemia-associated nuclear bodies and the chromatin compartment. Proc. Natl Acad. Sci. USA 95 , 7316–7321 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bloch, D. B., de la Monte, S. M., Guigaouri, P., Filippov, A. & Bloch, K. D. Identification and characterization of a leukocyte-specific component of the nuclear body. J. Biol. Chem. 271, 29198–29204 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Boisvert, F. M., Hendzel, M. J. & Bazett-Jones, D. P. Promyelocytic leukemia (PML) nuclear bodies are protein structures that do not accumulate RNA. J. Cell Biol. 148, 283–292 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lehming, N., Le Saux, A., Schuller, J. & Ptashne, M. Chromatin components as part of a putative transcriptional repressing complex . Proc. Natl Acad. Sci. USA 95, 7322– 7326 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank all the past and present members of the laboratory of Molecular and Developmental Biology at Memorial Sloan–Kettering Cancer Center, working on PML and related subjects: Maria Barna, Mantu Bhaumik, Laurent Delva, Mirella Gaboli, Domenica Gandini, Marco Giorgio, Ailan Guo, Li-Zhen He, Sundeep Kalantry, Taha Merghoub, Daniela Peruzzi, Roberta Rivi, Simona Ronchetti, Davide Ruggero, Zhu-Gang Wang, Hui Zhang, as well as Letizia Longo in our Department. P.S. is recipient of a ‘doctorate fellowship’ by the Medical School of the University of Modena, Italy. P.P.P. is a Scholar of the Leukemia and Lymphoma Society of America (formerly known as Leukemia Society of America). Our work is supported, by the NCI, the De Witt Wallace Fund for Memorial Sloan–Kettering Cancer centre, and NIH Grants to P.P.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Paolo Pandolfi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, S., Salomoni, P. & Pandolfi, P. The transcriptional role of PML and the nuclear body. Nat Cell Biol 2, E85–E90 (2000). https://doi.org/10.1038/35010583

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35010583

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing