Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamics and retention of misfolded proteins in native ER membranes

Abstract

When co-translationally inserted into endoplasmic reticulum (ER) membranes, newly synthesized proteins encounter the lumenal environment of the ER, which contains chaperone proteins that facilitate the folding reactions necessary for protein oligomerization, maturation and export from the ER. Here we show, using a temperature-sensitive variant of vesicular stomatitis virus G protein tagged with green fluorescent protein (VSVG–GFP), and fluorescence recovery after photobleaching (FRAP), the dynamics of association of folded and misfolded VSVG complexes with ER chaperones. We also investigate the potential mechanisms underlying protein retention in the ER. Misfolded VSVG–GFP complexes at 40 °C are highly mobile in ER membranes and do not reside in post-ER compartments, indicating that they are not retained in the ER by immobilization or retrieval mechanisms. These complexes are immobilized in ATP-depleted or tunicamycin-treated cells, in which VSVG–chaperone interactions are no longer dynamic. These results provide insight into the mechanisms of protein retention in the ER and the dynamics of protein-folding complexes in native ER membranes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Attachment of GFP to ts045 VSVG does not alter its temperature-dependent folding.
Figure 2: Both correctly folded (32 °C) and misfolded (40 °C) forms of VSVG–GFP are highly mobile in ER membranes.
Figure 3: The extent and time course of fluorescence recovery for VSVG–GFP in the ER are similar at 32 °C and 40 °C, but are decreased by ATP depletion.
Figure 4: Repetitive photobleaching of cells expressing KDELR–GFP and VSVG–GFP reveals different mechanisms for their retention in the ER.
Figure 5: Cells expressing KDELR–GFP contain more residual fluorescent structures than cells expressing VSVG–GFP after repeated photobleaching.
Figure 6: ER-localized VSVG–GFP is immobilized by tunicamycin treatment.
Figure 7: Immobilization of VSVG–GFP by tunicamycin treatment.
Figure 8: Diffusional mobility of the soluble ER protein ss–GFP is affected by inhibition of N-linked glycosylation.
Figure 9: Effects of ATP depletion, tunicamycin and dithiothreitol on mobility of ss–GFP.

Similar content being viewed by others

References

  1. Kreis, T. E. & Lodish, H. F. Oligomerization is essential for transport of vesicular stomatitis viral glycoproteins to the cell surface . Cell 46, 929–937 (1986).

    Article  CAS  Google Scholar 

  2. Bergmann, J. E. Using temperature-sensitive mutants of VSV to study membrane protein biogenesis . Methods Cell Biol. 32, 85– 110 (1989).

    Article  CAS  Google Scholar 

  3. Presley, J. F. et al. ER-to-Golgi transport visualized in living cells. Nature 389, 81–85 ( 1997).

    Article  CAS  Google Scholar 

  4. Doms, R. W., Keller, D. S., Helenius, A. & Balch, W. E. Role of adenosine triphosphate in regulating the assembly and transport of vesicular stomatitis virus G protein trimers. J. Cell Biol. 105, 1957–1969 (1987).

    Article  CAS  Google Scholar 

  5. Machamer, C. E., Doms, R. W., Bole, D. G., Helenius, A. & Rose, J. K. Heavy chain binding protein recognizes incompletely disulfide-bonded forms of vesicular stomatitis virus G protein. J. Biol. Chem. 265, 6879–6883 (1990).

    CAS  PubMed  Google Scholar 

  6. De Silva, A., Balch, W. E. & Helenius, A. Quality control in the endoplasmic reticulum: folding and misfolding of vesicular stomatitis virus G protein in cells and in vitro . J. Cell Biol. 111, 857– 866 (1990).

    Article  CAS  Google Scholar 

  7. De Silva, A., Braakman, I. & Helenius, A. Post-translational folding of vesicular stomatitis virus G protein in the ER: involvement of noncovalent and covalent complexes. J. Cell Biol. 120, 647–655 (1993).

    Article  CAS  Google Scholar 

  8. Hammond, C. & Helenius, A. Folding of VSVG protein: sequential interaction with BiP and calnexin. Science 266, 456–458 (1994).

    Article  CAS  Google Scholar 

  9. Doms, R. W., Ruusala, A., Machamer, C., Helenius, A. & Rose, J. K. Differential effects of mutations in three domains on folding, quaternary structure, and intracellular transport of vesicular stomatitis virus G protein. J. Cell Biol. 107, 89–99 (1988).

    Article  CAS  Google Scholar 

  10. Hammond, C. & Helenius, A. Quality control in the secretory pathway. Curr. Opin. Cell Biol. 7, 525– 539 (1995).

    Article  Google Scholar 

  11. Hammond, C. & Helenius, A. Quality control in the secretory pathway: retention of a misfolded viral membrane glycoprotein involves cycling between the ER, intermediate compartment and Golgi apparatus. J. Cell Biol. 126, 41–52 (1994).

    Article  CAS  Google Scholar 

  12. Edidin, M. in Mobility and Proximity in Biological Membranes (eds Damjanovich, S., Edidin, M., Szollosi, J & Tron, L.) 109–135 (CRC, Boca Raton, Florida, 1994).

  13. Braakman, I., Helenius, J. & Helenius, A. Role of ATP and disulphide bonds during protein folding in the endoplasmic reticulum. Nature 356, 260–262 (1992).

    Article  CAS  Google Scholar 

  14. Leavitt, R., Schlessinger, S. & Kornfeld, S. Impaired intracellular migration and altered solubility of nonglycosylated glycoproteins of vesicular stomatitis virus and Sindbis virus. J. Biol. Chem. 252, 9018– 9023 (1977).

    CAS  PubMed  Google Scholar 

  15. Lefrancois, L. & Lyles, D. S. The interaction of antibody with the major surface glycoprotein of vesicular stomatitis virus. I. Analysis of neutralizing epitopes with monoclonal antibodies. Virology 121, 157–166 ( 1982).

    Article  CAS  Google Scholar 

  16. Lippincott-Schwartz, J. et al. Microtubule-dependent retrograde transport of proteins into the ER in the presence of brefeldin A suggests an ER recycling pathway. Cell 60, 821–836 ( 1990).

    Article  CAS  Google Scholar 

  17. Cole, N. B. et al. Diffusional mobility of Golgi proteins in membranes of living cells. Science 273, 797– 801 (1996).

    Article  CAS  Google Scholar 

  18. Poo, M., & Cone, R. A. Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature 247, 438–441 (1974).

    Article  CAS  Google Scholar 

  19. Hughes, B. D., Pailthorpe, B. A., White, L. R. & Sawyer, W. H. Extraction of membrane microviscosity from translation and rotational diffusion coefficients. Biophys. J. 37, 673– 676 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Dayel, M. J., Hom, E. F. Y. & Verkman, A. S. Diffusion of green fluorescent protein in the aqueous-phase lumen of endoplasmic reticulum. Biophysical J. 76, 2843–2851 (1999).

    Article  CAS  Google Scholar 

  21. Kassenbrock, C. K. & Kelly, R. B. Interaction of heavy chain binding protein (BiP/GRP78) with adenine nucleotides. EMBO J. 8, 1461–1467 ( 1989).

    Article  CAS  Google Scholar 

  22. Dorner, A. J., Wasley, L. C. & Kaufman, R. J. Protein dissociation from GRP78 and secretion are blocked by depletion of cellular ATP levels. Proc. Natl Acad. Sci. USA 87, 7429–7432 ( 1990).

    Article  CAS  Google Scholar 

  23. Hendershot, L.M. et al. In vivo expression of mammalian BiP ATPase mutants causes disruption of the endoplasmic reticulum. Mol. Biol. Cell 6, 283–296 ( 1995).

    Article  CAS  Google Scholar 

  24. Braakman, I., Helenius, J. & Helenius, A. Manipulating disulfide bond formation and protein folding in the endoplasmic reticulum. EMBO J. 11, 1717–1722 (1992).

    Article  CAS  Google Scholar 

  25. Tatu, U., Braakman, I. & Helenius, A. Membrane glycoprotein folding, oligomerization and intracellular transport: effects of dithiothreitol in living cells. EMBO J. 12, 2151–2157 (1993).

    Article  CAS  Google Scholar 

  26. Helenius, A. How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Mol. Biol. Cell 5, 253– 265 (1994).

    Article  CAS  Google Scholar 

  27. Helenius, A., Trombetta, E. S., Hebert, D. N. & Simons, J. F. Calnexin, calreticulin and the folding of glycoproteins. Trends Cell Biol. 7, 193–201 (1997).

    Article  CAS  Google Scholar 

  28. Saraste, J. & Kuismanen, E. Pathways of protein sorting and membrane traffic between the rough endoplasmic reticulum and the Golgi complex . Semin. Cell Biol. 3, 343– 355 (1992).

    Article  CAS  Google Scholar 

  29. Schweizer, A. et al. Identification of an intermediate compartment involved in protein transport from endoplasmic reticulum to Golgi apparatus. Eur. J. Cell Biol. 53, 185–196 (1990).

    CAS  PubMed  Google Scholar 

  30. Lewis, M. J. & Pelham, H. R. Ligand induced redistribution of a human KDEL receptor from the Golgi complex to the endoplasmic reticulum . Cell 68, 353–364 (1992).

    Article  CAS  Google Scholar 

  31. Marguet, D. et al. Lateral diffusion of GFP-tagged H2Ld molecules and of GFP–TAP1 reports on the assembly and retention of these molecules in the endoplasmic reticulum. Immunity 11, 231–240 (1999).

    Article  CAS  Google Scholar 

  32. Szcesna-Skorupa, E., Chen, C. D., Rogers, S. & Kemper, B. Mobility of cytochrome P450 in the endoplasmic reticulum membrane. Proc. Natl Acad. Sci. USA 95, 14793–14798 (1998).

    Article  Google Scholar 

  33. Howard, J. C. Supply and transport of peptides presented by class I MHC molecules. Curr. Opin. Immunol. 7, 69–76 (1995).

    Article  CAS  Google Scholar 

  34. Koch, G. L. E. Reticuloplasmins: a novel group of proteins in the endoplasmic reticulum. J. Cell Sci. 87, 491–492 (1987).

    CAS  PubMed  Google Scholar 

  35. Wier, M. & Edidin, M. Constraint of the translational diffusion of a membrane glycoprotein by its external domains. Science 242, 412–414 (1988).

    Article  CAS  Google Scholar 

  36. Helenius, A., Marquardt, T. & Braakman, I. The endoplasmic reticulum as a protein-folding compartment . Trends Cell Biol. 2, 227– 231 (1992).

    Article  CAS  Google Scholar 

  37. Hurtley, S. M. & Helenius, A. Protein oligomerization in the endoplasmic reticulum. Annu. Rev. Cell Biol. 5, 277–307(1989).

  38. Sidrauski, C., Chapman, R. & Walter, P. The unfolded protein response: an intracellular signalling pathway with many surprising features. Trends Cell Biol. 8, 245–249 (1998).

    Article  CAS  Google Scholar 

  39. Ellenberg, J. et al. Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J. Cell Biol. 138, 1193–1206 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Nichols, K. Hirschberg and J. Bonifacino for comments and suggestions and P. Walter (USCF, San Francisco, CA) for SRβ DNA. E.S. is supported by a grant (ROI GM59018-01) from the NIH.

Correspondence and requests for materials should be addressed to J.L-S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Lippincott-Schwartz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nehls, S., Snapp, E., Cole, N. et al. Dynamics and retention of misfolded proteins in native ER membranes. Nat Cell Biol 2, 288–295 (2000). https://doi.org/10.1038/35010558

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35010558

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing