Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Motor proteins regulate force interactions between microtubules and microfilaments in the axon

Abstract

It has long been known that microtubule depletion causes axons to retract in a microfilament-dependent manner, although it was not known whether these effects are the result of motor-generated forces on these cytoskeletal elements. Here we show that inhibition of the motor activity of cytoplasmic dynein causes the axon to retract in the presence of microtubules. This response is obliterated if microfilaments are depleted or if myosin motors are inhibited. We conclude that axonal retraction results from myosin-mediated forces on the microfilament array, and that these forces are counterbalanced or attenuated by dynein-mediated forces between the microfilament and microtubule arrays.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of nocodazole, nocodazole and latrunculin, or nocodazole and NEM-modified-S1 on axonal retraction.
Figure 2: Effect of recombinant dynamitin on axonal retraction.
Figure 3: Quantitative immunofluorescence analysis of microtubule concentration and distribution in retracting axons.
Figure 4: Effects on axons of dynamitin in combination with latrunculin or with NEM-modified S1.

Similar content being viewed by others

References

  1. Halloran, M. C. & Kalil, K. Dynamic behaviors of growth cones extending in the corpus callosum of living cortical brain slices observed with video microscopy. J. Neurosci. 14, 2161–2177 (1994).

    Article  CAS  Google Scholar 

  2. Tanaka, E. & Sabry, J. Making the connection: cytoskeletal rearrangements during growth cone guidance. Cell 83, 171–176 (1995).

    Article  CAS  Google Scholar 

  3. Yamada, K. M., Spooner, B. S. & Wessells, N. K. Ultrastructure and function of growth cones and axons of cultured nerve cells. J. Cell Biol. 49, 614–635 (1971).

    Article  CAS  Google Scholar 

  4. Bray, D. & Bunge, M. B. Serial analysis of microtubules in cultured rat sensory axons. J. Neurocytol. 10, 589–605 (1981).

    Article  CAS  Google Scholar 

  5. Yu, W. & Baas, P. W. Changes in microtubule number and length during axon differentiation. J. Neurosci. 14, 2818–2829 (1994).

    Article  CAS  Google Scholar 

  6. Letourneau, P. C. Differences in the organization of actin in growth cones compared with the neurites of cultured neurons from chick embryos. J. Cell Biol. 97, 963–973 (1993).

    Article  Google Scholar 

  7. Fath, K. R. & Lasek, R. J. Two classes of actin microfilaments are associated with the inner cytoskeleton of axons. J. Cell Biol. 107, 613–621 (1988).

    Article  CAS  Google Scholar 

  8. Lewis, A. K. & Bridgman, P. C. Nerve growth cone lamellipodia contain two populations of actin filaments that differ in organization and polarity. J. Cell Biol. 119, 1219–1243 (1992).

    Article  CAS  Google Scholar 

  9. Bearer, E. L. & Reese, T. S. Association of actin filaments with axonal microtubule tracts. J. Neurocytol. 2, 85–98 (1999).

    Article  Google Scholar 

  10. Yamada, K. M., Spooner, B. S. & Wessells, N. K. Axon growth: role of microfilaments and microtubules. Proc. Natl Acad. Sci. USA 66, 1206–1212 (1970).

    Article  CAS  Google Scholar 

  11. Letourneau, P. C., Shattuck, T. A. & Ressler, A. H. ‘Pull’ and ‘push’ in neurite elongation: observations on the effects of different concentrations of cytochalasin B and taxol. Cell Motil. Cytoskeleton 8, 193–209 (1987).

    Article  CAS  Google Scholar 

  12. Forscher, P. & Smith, S. J. Actions of cytochalasins on the organization of actin filaments and microtubules in the neuronal growth cone. J. Cell Biol. 107, 1505–1516 (1988).

    Article  CAS  Google Scholar 

  13. Lin, C. H. & Forscher, P. Cytoskeletal remodeling during growth cone-target interactions. J. Cell Biol. 121, 1369–1383 (1993).

    Article  CAS  Google Scholar 

  14. Challacombe, J. F., Snow, D. M. & Letourneau, P. C. Actin filament bundles are required for microtubule reorientation during growth cone turning to avoid an inhibitory guidance cue. J. Cell Sci. 109, 2031–2040 (1996).

    CAS  PubMed  Google Scholar 

  15. Rochlin, W. M., Dailey, M. E. & Bridgman, P. C. Polymerizing microtubules activate site-directed F-actin assembly in nerve growth cones. Mol. Biol. Cell 10, 2309–2327 (1999).

    Article  CAS  Google Scholar 

  16. Solomon, F. & Magendantz, M. Cytochalasin separates microtubule disassembly from loss of asymmetric morphology. J. Cell Biol. 89, 157–161 (1988).

    Article  Google Scholar 

  17. Joshi, H. C., Chu, D., Buxbaum, R. E. & Heidemann, S. R. Tension and compression in the cytoskeleton of PC12 neurites. J. Cell Biol. 101, 697–705 (1985).

    Article  CAS  Google Scholar 

  18. Heidemann, S. R. & Buxbaum, R. E. Tension as a regulator and integrator of axonal growth. Cell Motil. Cytoskeleton 17, 6–10 (1990).

    Article  CAS  Google Scholar 

  19. Walczak, C. E. & Mitchison, T. J. Kinesin-related proteins at mitotic spindle poles: function and regulation. Cell 85, 943–946 (1996).

    Article  CAS  Google Scholar 

  20. Walczak, C. E., Vernos, I., Mitchison, T. J., Karsenti, E. & Heald, R. A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Curr. Biol. 8, 903–913 (1998).

    Article  CAS  Google Scholar 

  21. Koonce, M. P. et al. Dynein motor regulation stabilizes interphase microtubule arrays and determines centrosome position. EMBO J. 18, 6786–6792 (1999).

    Article  CAS  Google Scholar 

  22. Ma, S., Trivinos-Lagos, L., Graf, R. & Chisholm, R. L. Dynein intermediate chain mediated dynein-dynactin interaction is required for interphase microtubule organization and centrosome replication and separation in Dictyostelium. J. Cell Biol. 147, 1261–1273 (1999).

    Article  CAS  Google Scholar 

  23. Garces, J. A., Clark, I. B., Meyer, D. I. & Vallee, R. B. Interaction of the p62 subunit of dynactin with Arp1 and the cortical actin cytoskeleton. Curr. Biol. 9, 1497–1500 (1999).

    Article  CAS  Google Scholar 

  24. Gonczy, P., Pichler, S., Kirkham, M. & Hyman, A. A. Cytoplasmic dynein is required for distinct aspects of MTOC positioning, including centrosome separation, in one cell stage of Caenorhabditis elegans embryo. J. Cell Biol. 147, 135–150 (1999).

    Article  CAS  Google Scholar 

  25. Busson, S., Dujardin, D., Moreau, A., Dompierre, J. & Mey, J. R. D. Dynein and dynactin are localized to astral microtubules and at cortical sites in mitotic epithelial cells. Curr. Biol. 8, 541–544 (1998).

    Article  CAS  Google Scholar 

  26. Carminati, J. L. & Stearns, T. Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. J. Cell Biol. 138, 629–641 (1997).

    Article  CAS  Google Scholar 

  27. Inoue, S., Yoder, O. C., Turgeon, B. G. & Aist, J. R. A cytoplasmic dynein required for mitotic aster formation in vivo. J. Cell Sci. 111, 2607–2614 (1998).

    CAS  PubMed  Google Scholar 

  28. Ahmad, F. J., Echeverri, C. J., Vallee, R. B. & Baas, P. W. Cytoplasmic dynein and dynactin are required for the transport of microtubules into the axon. J. Cell Biol. 140, 246–256 (1998).

    Article  Google Scholar 

  29. Evans, L. L. & Bridgman, P. C. Particles move along actin filament bundles in nerve growth cones. Proc. Natl Acad. Sci. USA 92, 10954–10958 (1995).

    Article  CAS  Google Scholar 

  30. Karki, S. & Holzbaur, E. L. Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr. Opin. Cell Biol. 11, 45–53 (1999).

    Article  CAS  Google Scholar 

  31. Shaw, G. & Bray, D. Movement and extension of isolated growth cones. Exp. Cell Res. 104, 55–62 (1977).

    Article  CAS  Google Scholar 

  32. Baas, P. W. & Heidemann, S. R. Microtubule reassembly from nucleating fragments during the regrowth of amputated neurites. J. Cell Biol. 103, 917–927 (1986).

    Article  CAS  Google Scholar 

  33. Yu, W. & Baas, P. W. The growth of the axon is not dependent upon net microtubule assembly at its distal tip. J. Neurosci. 15, 6827–6833 (1995).

    Article  CAS  Google Scholar 

  34. Spector, I., Sochet, N. R., Kashman, Y. & Groweiss, A. Latrunculins: novel marine toxins that disrupt microfilament organization in cultured cells. Science 241, 493–495 (1983).

    Article  Google Scholar 

  35. George, E. B., Schneider, B. F., Lasek, R. J. & Katz, M. J. Axonal shortening and the mechanisms of axonal motility. Cell Motil. Cytoskeleton 9, 48–59 (1988).

    Article  CAS  Google Scholar 

  36. Lin, C. H., Espreafico, E. M., Mooseker, M. S. & Forscher, P. Myosin drives retrograde F-actin flow in neuronal growth cones. Neuron 16, 769–782 (1996).

    Article  CAS  Google Scholar 

  37. Meeusen, R. L. & Cande, W. Z. N-Ethylmaleimide-modified heavy meromyosin: a probe for actomyosin interactions. J. Cell Biol. 82, 57–65 (1979).

    Article  CAS  Google Scholar 

  38. Meeusen, R. L., Bennett, J. & Cande, W. Z. Effect of microinjected N-ethylmaleimide-modified heavy meromyosin on cell division in amphibian eggs. J. Cell Biol. 86, 858–865 (1980).

    Article  CAS  Google Scholar 

  39. Echeverri, C. J., Paschal, B. M., Vaughan, K. T. & Vallee, R. B. Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J. Cell Biol. 132, 617–633 (1996).

    Article  CAS  Google Scholar 

  40. Wittmann, T. & Hyman, T. Recombinant p50/dynamitin as a tool to examine the role of dynactin in intracellular processes. Methods Cell Biol. 61, 137–143 (1999).

    Article  CAS  Google Scholar 

  41. Heidemann, S. R., Kaech, S., Buxbaum, R. E. & Matus, A. Direct observations of the mechanical behaviors of the cytoskeleton in living fibroblasts. J. Cell Biol. 145, 109–122 (1999).

    Article  CAS  Google Scholar 

  42. Ingber, D. E. Tensegrity: the architectural basis of cellular mechanotransduction. Annu. Rev. Physiol. 59, 575–599 (1997).

    Article  CAS  Google Scholar 

  43. Kolodney, M. S. & Elson, E. L. Contraction due to microtubule disruption is associated with increased phosphorylation of myosin regulatory light chain. Proc. Natl Acad. Sci. USA 92, 10252–10256 (1995).

    Article  CAS  Google Scholar 

  44. Hirose, M. et al. Molecular dissection of the Rho-associated protein kinase (p160ROCK)-regulated neurite remodeling in neuroblastoma N1E-115 cells. J. Cell Biol. 141, 1625–1636 (1998).

    Article  CAS  Google Scholar 

  45. Olsson, P-R., Korhonen, L., Mercer, E. A. & Lindholm, D. MIR is a novel ERM-like protein that interacts with myosin regulatory light chain and inhibits neurite outgrowth. J. Biol. Chem. 274, 36288–36292 (1999).

    Article  CAS  Google Scholar 

  46. Waterman-Storer, C. M., Worthylake, R. A., Liu, B. P., Burridge, K. & Salmon, E. D. Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts. Nature Cell Biol. 1, 45–50 (1999).

    Article  CAS  Google Scholar 

  47. Waterman-Storer, C. M & Salmon, E. Positive feedback interactions between microtubule and actin dynamics during cell motility. Curr. Opin. Cell Biol. 11, 61–67 (1999).

    Article  CAS  Google Scholar 

  48. Dillman, J. F., Dabney, L. P. & Pfister, K. K. Cytoplasmic dynein is associated with slow axonal transport. Proc. Natl Acad. Sci. USA 93, 141–144 (1996).

    Article  CAS  Google Scholar 

  49. Baas, P. W. Microtubules and neuronal polarity: lessons from mitosis. Neuron 22, 23–41 (1999).

    Article  CAS  Google Scholar 

  50. Rodionov, V. I. et al. Microtubule-dependent control of cell shape and pseudopodial activity is inhibited by the antibody to kinesin motor domain. J. Cell Biol. 123, 1811–1820 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Warren for help in preparing NEM-S1, and A. Brown and E. Dent for comments on the manuscript. This work was supported by grants from the US National Institutes of Health and National Science Foundation.

Correspondence and requests for materials should be addressed to P.W.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter W. Baas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, F., Hughey, J., Wittmann, T. et al. Motor proteins regulate force interactions between microtubules and microfilaments in the axon. Nat Cell Biol 2, 276–280 (2000). https://doi.org/10.1038/35010544

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35010544

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing