Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Intercellular adhesion, signalling and the cytoskeleton

Abstract

Connections between the cytoskeleton and intercellular junctions profoundly influence cell shape and motility. It is becoming increasingly clear that in addition to structural functions, components of the adhesion apparatus also possess signalling capabilities. Recent studies suggest that their dual function may provide the means to integrate changes in morphology and gene expression during tissue and organ development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the adherens junction (AJ) and desmosomes.
Figure 2: Intermediate structures during the early formation of cell–cell contacts.
Figure 3: Adhesion dynamics during hair follicle morphogenesis.
Figure 4: Wnt signalling.

Similar content being viewed by others

References

  1. Hogan, B. L. Morphogenesis. Cell 96, 225–233 (1999).

    CAS  PubMed  Google Scholar 

  2. Yap, A. S., Brieher W. M. & Gumbiner B. M. Molecular and functional analysis of cadherin-based adherens junctions. Annu. Rev. Cell Dev. Biol. 13, 119–146 (1997).

    CAS  PubMed  Google Scholar 

  3. Chen, Y. T., Stewart, D. B. & Nelson, W. J. Coupling assembly of the E-cadherin/beta-catenin complex to efficient endoplasmic reticulum exit and basal-lateral membrane targeting of E-cadherin in polarized MDCK cells. J. Cell Biol. 4, 687–699 (1994).

    Google Scholar 

  4. Aberle, H. et al. Assembly of the cadherin–catenin complex in vitro with recombinant proteins. J. Cell Sci. 107, 3655–3663 (1994).

    CAS  PubMed  Google Scholar 

  5. Huber O., Krohn M. & Kemler R. A specific domain in alpha-catenin mediates binding to beta-catenin or plakoglobin. J. Cell Sci. 110, 1759–1765 (1994).

    Google Scholar 

  6. Vasioukhin, V., Bauer, C., Yin, M. & Fuchs, E. Directed actin polymerization is the driving force for epithelial cell–cell adhesion. Cell 100, 209–219 (2000).

    CAS  PubMed  Google Scholar 

  7. Giancotti, F. G. & Ruoslahti, E. Integrin signalling. Science 285, 1028–1032 (1999).

    CAS  PubMed  Google Scholar 

  8. Reinhard, M., Jarchau, T. & Walter, U. Actin-based motility: stop and go with Ena/VASP proteins. Trends Biochem. Sci. 26, 243–249 (2001).

    CAS  PubMed  Google Scholar 

  9. Taylor, K. A. & Taylor, D. W. Formation of two-dimensional complexes of F-actin and crosslinking proteins on lipid monolayers: demonstration of unipolar α-actinin–F-actin crosslinking. Biophys. J. 67, 1976–1983 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Reynolds, A. B. et al. Identification of a new catenin: the tyrosine kinase substrate p120cas associates with E-cadherin complexes. Mol. Cell Biol. 14, 8333–8342 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Anastasiadis, P. Z. & Reynolds, A. B. The p120 catenin family: complex roles in adhesion, signalling and cancer. J. Cell Sci. 113, 1319–1334 (2000).

    CAS  PubMed  Google Scholar 

  12. Kowalczyk, A. P., Bornslaeger, E. A., Norvell, S. M., Palka, H. L. & Green, K. J. Desmosomes: intercellular adhesive junctions specialized for attachment of intermediate filaments. Int. Rev. Cytol. 185, 237–302 (1999).

    CAS  PubMed  Google Scholar 

  13. Stappenbeck, T. S., Lamb, J. A., Corcoran, C. M. & Green, K. J. Phosphorylation of the desmoplakin COOH terminus negatively regulates its interaction with keratin intermediate filament networks. J. Biol. Chem. 269, 29351–29354 (1994).

    CAS  PubMed  Google Scholar 

  14. Kouklis, P. D., Hutton, E. & Fuchs, E. Making a connection: direct binding between keratin intermediate filaments and desmosomal proteins. J. Cell Biol. 127, 1049–1060 (1994).

    CAS  PubMed  Google Scholar 

  15. Smith, E. A. & Fuchs, E. Defining the interactions between intermediate filaments and desmosomes. J. Cell Biol. 141, 1229–1241 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bierkamp, C, Schwarz, H., Huber O. & Kemler R. Desmosomal localization of β-catenin in the skin of plakoglobin null-mutant mice. Development 126, 371–381 (1999).

    CAS  PubMed  Google Scholar 

  17. Hatsell, S. & Cowin, P. Deconstructing desmoplakin. Nature Cell Biol. 3, E270–E272 (2001).

    CAS  PubMed  Google Scholar 

  18. Adams, C. L., Chen, Y. T., Smith, S. J. & Nelson, W. J. Mechanisms of epithelial cell–cell adhesion and cell compaction revealed by high-resolution tracking of E-cadherin–green fluorescent protein. J. Cell Biol. 142, 1105–1119 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yonemura, S., Itoh, M., Nagafuchi, A. & Tsukita, S. Cell-to-cell adherens junction formation and actin filament organization: similarities and differences between non-polarized fibroblasts and polarized epithelial cells. J. Cell Sci. 108, 127–142 (1995).

    CAS  PubMed  Google Scholar 

  20. Vasioukhin, V., Bauer, C., Degenstein, L., Wise, B. & Fuchs, E. Hyperproliferation and defects in epithelial polarity upon conditional ablation of α-catenin in skin. Cell 104, 605–617 (2001).

    CAS  PubMed  Google Scholar 

  21. Raich, W. B., Agbunag, C. & Hardin, J. Rapid epithelial-sheet sealing in the Caenorhabditis elegans embryo requires cadherin-dependent filopodial priming. Curr. Biol. 9, 1139–1146 (1999).

    CAS  PubMed  Google Scholar 

  22. Martin-Blanco, E., Pastor-Pareja, J. C. & Garcia-Bellido, A. JNK and decapentaplegic signalling control adhesiveness and cytoskeleton dynamics during thorax closure in Drosophila. Proc. Natl Acad. Sci. USA 97, 7888–7893 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tanaka-Matakatsu, M., Uemura, T., Oda, H., Takeichi, M. & Hayashi, S. Cadherin-mediated cell adhesion and cell motility in Drosophila trachea regulated by the transcription factor Escargot. Development 122, 3697–3705 (1996).

    CAS  PubMed  Google Scholar 

  24. Vasioukhin, V., Bowers, E., Bauer, C., Degenstein, L. & Fuchs, E. Desmoplakin is essential in epidermal sheet formation. Nature Cell Biol. 3, 1076–1085 (2001).

    CAS  PubMed  Google Scholar 

  25. Hall, A. & Nobes, C. D. Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton. Phil. Trans. R. Soc. Lond. B. 355, 965–970 (2000).

    CAS  Google Scholar 

  26. Nakagawa, M., Fukata, M., Yamaga, M., Itoh, N. & Kaibuchi, K. Recruitment and activation of Rac1 by the formation of E-cadherin-mediated cell–cell adhesion sites. J. Cell Sci. 114, 1829–1838 (2001).

    CAS  PubMed  Google Scholar 

  27. Fukata, M. et al. Cdc42 and Rac1 regulate the interaction of IQGAP1 with β-catenin. J. Biol. Chem. 274, 26044–26050 (1999).

    CAS  PubMed  Google Scholar 

  28. Sander, E. E. et al. Matrix-dependent Tiam1/Rac signalling in epithelial cells promotes either cell–cell adhesion or cell migration and is regulated by phosphatidylinositol 3-kinase. J. Cell Biol. 143, 1385–1398 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kovacs, E. M, Ali, R. G., McCormack, A. J. & Yap, A. S. E-cadherin Homophilic Ligation Directly Signals through Rac and Phosphatidylinositol 3-Kinase to Regulate Adhesive Contacts. J. Biol. Chem. 277, 6708–6718 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Kodama, A., Takaishi, K., Nakano, K., Nishioka, H. & Takai, Y. Involvement of Cdc42 small G protein in cell–cell adhesion, migration and morphology of MDCK cells. Oncogene 18, 3996–4006 (1999).

    CAS  PubMed  Google Scholar 

  31. Kim, S. H., Li, Z. & Sacks, D. B. E-cadherin-mediated cell–cell attachment activates Cdc42. J. Biol. Chem. 275, 36999–37005 (2000).

    CAS  PubMed  Google Scholar 

  32. Jacinto, A. et al. Dynamic actin-based epithelial adhesion and cell matching during Drosophila dorsal closure. Curr. Biol. 10, 1420–1426 (2000).

    CAS  PubMed  Google Scholar 

  33. Izumi, Y. et al. An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J. Cell Biol. 143, 95–106 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ohno, S. Intercellular junctions and cellular polarity: the PAR–aPKC complex, a conserved core cassette playing fundamental roles in cell polarity. Curr. Opin. Cell Biol. 13, 641–648 (2001).

    CAS  PubMed  Google Scholar 

  35. Pollard, T. D., Blanchoin, L. & Mullins, R. D. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29, 545–576 (2000).

    CAS  PubMed  Google Scholar 

  36. Chausovsky, A., Bershadsky, A. D. & Borisy, G. G. Cadherin-mediated regulation of microtubule dynamics. Nature Cell Biol. 2, 797–804 (2000).

    CAS  PubMed  Google Scholar 

  37. Le Borgne, R., Bellaiche, Y. & Schweisguth, F. Drosophila E-cadherin regulates the orientation of asymmetric cell division in the sensory organ lineage. Curr. Biol. 12, 95–104 (2002).

    CAS  PubMed  Google Scholar 

  38. Munemitsu, S. et al. The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Res. 54, 3676–3681 (1994).

    CAS  PubMed  Google Scholar 

  39. Karakesisoglou, I., Yang, Y. & Fuchs, E. An epidermal plakin that integrates actin and microtubule networks at cellular junctions. J. Cell Biol. 149, 195–208 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lu, B., Roegiers, F., Jan, L. Y. & Jan, Y. N. Adherens junctions inhibit asymmetric division in the Drosophila epithelium. Nature 409, 522–525 (2001).

    CAS  PubMed  Google Scholar 

  41. Ligon, L. A., Karki, S., Tokito, M. & Holzbaur, E. L. Dynein binds to β-catenin and may tether microtubules at adherens junctions. Nature Cell Biol. 3, 913–917 (2001).

    CAS  PubMed  Google Scholar 

  42. Larue, L., Ohsugi, M., Hirchenhain, J. & Kemler, R. E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc. Natl Acad. Sci. USA 91, 8263–8267 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Torres, M. et al. An α-E-catenin gene trap mutation defines its function in preimplantation development. Proc. Natl Acad. Sci. USA 94, 901–906 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Haegel, H. et al. Lack of β-catenin affects mouse development at gastrulation. Development 121, 3529–3537 (1995).

    CAS  PubMed  Google Scholar 

  45. Cadigan, K. M. & Nusse, R. Wnt signalling: a common theme in animal development. Genes Dev. 11, 3286–305 (1997).

    CAS  PubMed  Google Scholar 

  46. Garcia-Castro, M. I., Vielmetter, E. & Bronner-Fraser, M. N-Cadherin, a cell adhesion molecule involved in establishment of embryonic left–right asymmetry. Science 288, 1047–1051 (2000).

    CAS  PubMed  Google Scholar 

  47. Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G. & Birchmeier, W. β-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105, 533–545 (2001).

    CAS  PubMed  Google Scholar 

  48. Ruiz, P, et al. Targeted mutation of plakoglobin in mice reveals essential functions of desmosomes in the embryonic heart. J. Cell Biol. 135, 215–225 (1996).

    CAS  PubMed  Google Scholar 

  49. Koch, P. J. et al. Targeted disruption of the pemphigus vulgaris antigen (desmoglein 3) gene in mice causes loss of keratinocyte cell adhesion with a phenotype similar to pemphigus vulgaris. J. Cell Biol. 137, 1091–1102 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Chidgey M, et al. Mice lacking desmocollin 1 show epidermal fragility accompanied by barrier defects and abnormal differentiation. J. Cell Biol. 155, 821–832 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gallicano, G. I. et al. Desmoplakin is required early in development for assembly of desmosomes and cytoskeletal linkage. J. Cell Biol. 143, 2009–2022 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Gallicano, G. I., Bauer, C. & Fuchs, E. Rescuing desmoplakin function in extra-embryonic ectoderm reveals the importance of this protein in embryonic heart, neuroepithelium, skin and vasculature. Development 128, 929–941 (2001).

    CAS  PubMed  Google Scholar 

  53. Runswick, S. K., O'Hare, M. J., Jones, L., Streuli, C. H. & Garrod, D. R. Desmosomal adhesion regulates epithelial morphogenesis and cell positioning. Nature Cell Biol. 3, 823–830 (2001).

    CAS  PubMed  Google Scholar 

  54. Heasman, J. et al. Overexpression of cadherins and underexpression of β-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell 79, 791–803 (1994).

    CAS  PubMed  Google Scholar 

  55. Fagotto, F., Funayama, N., Gluck, U. & Gumbiner, B. M. Binding to cadherins antagonizes the signalling activity of β-catenin during axis formation in Xenopus. J. Cell Biol. 132, 1105–1114 (1996).

    CAS  PubMed  Google Scholar 

  56. Sanson, B., White, P. & Vincent, J. P. Uncoupling cadherin-based adhesion from wingless signalling in Drosophila. Nature 383, 627–630 (1996).

    PubMed  Google Scholar 

  57. Brieher, W. M., Yap, A. S. & Gumbiner, B. M. Lateral dimerization is required for the homophilic binding activity of C-cadherin. J. Cell Biol. 135, 487–496 (1996).

    CAS  PubMed  Google Scholar 

  58. Zhong, Y., Brieher, W. M. & Gumbiner, B. M. Analysis of C-cadherin regulation during tissue morphogenesis with an activating antibody. J. Cell Biol. 144, 351–359 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hardy, M. H. The secret life of the hair follicle. Trends Genet. 8, 55–61 (1992).

    CAS  PubMed  Google Scholar 

  60. Fuchs, E., Merrill, B. J., Jamora, C. & DasGupta, R. At the roots of a never-ending cycle. Dev. Cell 1, 13–25 (2001).

    CAS  PubMed  Google Scholar 

  61. Hardy, M. H. & Vielkind, U. Changing patterns of cell adhesion molecules during mouse pelage hair follicle development. 1. Follicle morphogenesis in wild-type mice. Acta Anat. (Basel) 157, 169–82 (1996).

    CAS  Google Scholar 

  62. Radice, G. L. et al. Precocious mammary gland development in P-cadherin-deficient mice. J. Cell Biol. 139, 1025–1032 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Gumbiner, B. M. Regulation of cadherin adhesive activity. J. Cell Biol. 148, 399–404 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hinck, L., Nelson, W. J. & Papkoff, J. Wnt-1 modulates cell–cell adhesion in mammalian cells by stabilizing β-catenin binding to the cell adhesion protein cadherin. J. Cell Biol. 124, 729–741 (1994).

    CAS  PubMed  Google Scholar 

  65. Bradley, R. S., Cowin, P. & Brown, A. M. Expression of Wnt-1 in PC12 cells results in modulation of plakoglobin and E-cadherin and increased cellular adhesion. J. Cell Biol. 123, 1857–1865 (1993).

    CAS  PubMed  Google Scholar 

  66. Yanagawa S, et al. Accumulation of Armadillo induced by Wingless, Dishevelled, and dominant-negative Zeste-White 3 leads to elevated DE-cadherin in Drosophila clone 8 wing disc cells. J. Biol. Chem. 272, 25243–25251 (1997).

    CAS  PubMed  Google Scholar 

  67. Wong, M. H., Rubinfeld, B. & Gordon, J. I. Effects of forced expression of an NH2-terminal truncated β-Catenin on mouse intestinal epithelial homeostasis. J. Cell Biol. 141, 765–777 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Gat, U., DasGupta, R., Degenstein, L. & Fuchs, E. De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated β-catenin in skin. Cell 95, 605–614 (1998).

    CAS  PubMed  Google Scholar 

  69. DasGupta, R. & Fuchs, E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126, 4557–4568 (1999).

    CAS  PubMed  Google Scholar 

  70. Imbert, A., Eelkema, R., Jordan, S., Feiner, H. & Cowin, P. Delta N89 β-catenin induces precocious development, differentiation, and neoplasia in mammary gland. J. Cell Biol. 153, 555–568 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Huber, O. et al. Nuclear localization of β-catenin by interaction with transcription factor LEF-1. Mech. Dev. 59, 3–10 (1996).

    CAS  PubMed  Google Scholar 

  72. Comijn, J. et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol. Cell 7, 1267–1278 (2001).

    CAS  PubMed  Google Scholar 

  73. Perez-Moreno, M. A. et al. A new role for E12/E47 in the repression of E-cadherin expression and epithelial–mesenchymal transitions. J. Biol. Chem. 276, 27424–27431 (2001).

    CAS  PubMed  Google Scholar 

  74. Ciruna, B. & Rossant, J. FGF signalling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev. Cell 1, 37–49 (2001).

    CAS  PubMed  Google Scholar 

  75. Nieto, M. A., Bennett, M. F., Sargent, M. G. & Wilkinson, D. G. Cloning and developmental expression of Sna, a murine homologue of the Drosophila snail gene. Development 116, 227–237 (1992).

    CAS  PubMed  Google Scholar 

  76. Smith, D. E., Franco del Amo, F. & Gridley, T. Isolation of Sna, a mouse gene homologous to the Drosophila genes snail and escargot: its expression pattern suggests multiple roles during postimplantation development. Development 116, 1033–1039 (1992).

    CAS  PubMed  Google Scholar 

  77. Huelsken, J. & Birchmeier, W. New aspects of Wnt signalling pathways in higher vertebrates. Curr. Opin. Genet. Dev. 11, 547–553 (2001).

    CAS  PubMed  Google Scholar 

  78. Sandoval, R. et al. Ca(2+) signalling and PKCα activate increased endothelial permeability by disassembly of VE-cadherin junctions. J. Physiol. 533, 433–445 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Winklbauer, R., Medina, A., Swain, R. K. & Steinbeisser, H. Frizzled-7 signalling controls tissue separation during Xenopus gastrulation. Nature 413, 856–860 (2001).

    CAS  PubMed  Google Scholar 

  80. Medina, A., Reintsch, W. & Steinbeisser, H. Xenopus Frizzled 7 can act in canonical and non-canonical Wnt signalling pathways: implications on early patterning and morphogenesis. Mech. Dev. 92, 227–237 (2000).

    CAS  PubMed  Google Scholar 

  81. Willert, K., Brink, M., Wodarz, A., Varmus, H. & Nusse, R. Casein kinase 2 associates with and phosphorylates dishevelled. EMBO J. 16, 3089–3096 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Lickert, H., Bauer, A., Kemler, R. & Stappert, J. Casein kinase II phosphorylation of E-cadherin increases E-cadherin–β-catenin interaction and strengthens cell–cell adhesion. J. Biol. Chem. 275, 5090–5095 (2000).

    CAS  PubMed  Google Scholar 

  83. Gao, Z. H., Seeling, J. M., Hill, V., Yochum, A. & Virshup, D. M. Casein kinase I phosphorylates and destabilizes the β-catenin degradation complex. Proc. Natl Acad. Sci. USA 99, 1182–1187 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Hoschuetzky, H., Aberle, H. & Kemler, R. β-catenin mediates the interaction of the cadherin–catenin complex with epidermal growth factor receptor. J. Cell Biol. 127, 1375–1380 (1994).

    CAS  PubMed  Google Scholar 

  85. Brady-Kalnay, S. M., Rimm, D. L. & Tonks, N. K. Receptor protein tyrosine phosphatase PTPmu associates with cadherins and catenins in vivo. J. Cell Biol. 130, 977–986 (1995).

    CAS  PubMed  Google Scholar 

  86. Shibamoto, S. et al. Tyrosine phosphorylation of β-catenin and plakoglobin enhanced by hepatocyte growth factor and epidermal growth factor in human carcinoma cells. Cell Adhes. Commun. 1, 295–305 (1994).

    CAS  PubMed  Google Scholar 

  87. Reynolds, A. B., Roesel, D. J., Kanner, S. B. & Parsons, J. T. Transformation-specific tyrosine phosphorylation of a novel cellular protein in chicken cells expressing oncogenic variants of the avian cellular src gene. Mol. Cell Biol. 9, 629–638 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Vleminckx, K. & Kemler, R. Cadherins and tissue formation: integrating adhesion and signalling. Bioessays 21, 211–220 (1999).

    CAS  PubMed  Google Scholar 

  89. Hermiston, M. L., Wong, M. H. & Gordon, J. I. Forced expression of E-cadherin in the mouse intestinal epithelium slows cell migration and provides evidence for nonautonomous regulation of cell fate in a self-renewing system. Genes Dev. 10, 985–996 (1996).

    CAS  PubMed  Google Scholar 

  90. Perl, A. K., Wilgenbus, P., Dahl, U., Semb, H. & Christofori, G. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392, 190–193 (1998).

    CAS  PubMed  Google Scholar 

  91. Orsulic, S., Huber, O., Aberle, H., Arnold, S. & Kemler, R. E-cadherin binding prevents β-catenin nuclear localization and β-catenin/LEF-1-mediated transactivation. J. Cell Sci. 112, 1237–1245 (1999).

    CAS  PubMed  Google Scholar 

  92. Gottardi, C. J., Wong, E. & Gumbiner, B. M. E-cadherin suppresses cellular transformation by inhibiting β-catenin signalling in an adhesion-independent manner. J. Cell Biol. 153, 1049–1060 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Stockinger, A., Eger, A., Wolf, J., Beug, H. & Foisner, R. E-cadherin regulates cell growth by modulating proliferation-dependent β-catenin transcriptional activity. J. Cell Biol. 154, 1185–1196 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Morton, R. A., Ewing, C. M., Nagafuchi, A., Tsukita, S. & Isaacs, W. B. Reduction of E-cadherin levels and deletion of the α-catenin gene in human prostate cancer cells. Cancer Res. 53, 3585–3590 (1993).

    CAS  PubMed  Google Scholar 

  95. Kallakury, B. V. et al. Decreased expression of catenins (α and β), p120 CTN, and E-cadherin cell adhesion proteins and E-cadherin gene promoter methylation in prostatic adenocarcinomas. Cancer 92, 2786–2795 (2001).

    CAS  PubMed  Google Scholar 

  96. Takahashi, N., Ishihara, S., Takada, S., Tsukita, S. & Nagafuchi, A. Posttranscriptional regulation of α-catenin expression is required for Wnt signalling in L cells. Biochem. Biophys. Res. Commun. 277, 691–698 (2000).

    CAS  PubMed  Google Scholar 

  97. van Hengel, J., Vanhoenacker, P., Staes, K. & van Roy, F. Nuclear localization of the p120(ctn) Armadillo-like catenin is counteracted by a nuclear export signal and by E-cadherin expression. Proc. Natl Acad. Sci. USA 96, 7980–7985 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kim, S. W. et al. Isolation and characterization of XKaiso, a transcriptional repressor that associates with the catenin Xp120ctn in Xenopus laevis. J. Biol. Chem. 277, 8208–8208 (2002).

    Google Scholar 

  99. Beckerle, M. C. Zyxin: zinc fingers at sites of cell adhesion. Bioessays 19, 949–957 (1997).

    CAS  PubMed  Google Scholar 

  100. Bach, I. The LIM domain: regulation by association. Mech. Dev. 91, 5–17 (2000).

    CAS  PubMed  Google Scholar 

  101. Petit M. M. et al. LPP, an actin cytoskeleton protein related to zyxin, harbors a nuclear export signal and transcriptional activation capacity. Mol. Biol. Cell 11, 117–129 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kanungo, J., Pratt, S. J., Marie, H. & Longmore, G. D. Ajuba, a cytosolic LIM protein, shuttles into the nucleus and affects embryonalcell proliferation and fate decisions. Mol. Biol. Cell 11, 3299–3313 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Rajasekaran, A. K., Hojo, M., Huima, T. & Rodriguez-Boulan, E. Catenins and zonula occludens-1 form a complex during early stages in the assembly of tight junctions. J. Cell Biol. 132, 451–463 (1996).

    CAS  PubMed  Google Scholar 

  104. Itoh, M., Nagafuchi, A., Moroi, S. & Tsukita, S. Involvement of ZO-1 in cadherin-based cell adhesion through its direct binding to α catenin and actin filaments. J. Cell Biol. 138, 181–192 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Balda, M. S. & Matter, K. The tight junction protein ZO-1 and an interacting transcription factor regulate ErbB-2 expression. EMBO J. 19, 2024–2033 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Miravet S., et al. The transcriptional factor Tcf-4 contains different binding sites for β-catenin and plakoglobin. J. Biol. Chem. 277, 1884–1891 (2002).

    CAS  PubMed  Google Scholar 

  107. Charpentier, E., Lavker, R. M., Acquista, E. & Cowin, P. Plakoglobin suppresses epithelial proliferation and hair growth in vivo. J. Cell Biol. 149, 503–520 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Fuchs lab for comments on the manuscript.

We also thank C. Bauer, S. Raghavan, A. Vaezi, C. Adams and W.J. Nelson for the use of their figures.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamora, C., Fuchs, E. Intercellular adhesion, signalling and the cytoskeleton. Nat Cell Biol 4, E101–E108 (2002). https://doi.org/10.1038/ncb0402-e101

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0402-e101

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing